14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metformin and cancer: An existing drug for cancer prevention and therapy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Metformin is a standard clinical drug used to treat type 2 diabetes mellitus (T2DM) and polycystic ovary syndrome. Recently, epidemiological studies and meta-analyses have revealed that patients with T2DM have a lower incidence of tumor development than healthy controls and that patients diagnosed with cancer have a lower risk of mortality when treated with metformin, demonstrating an association between metformin and tumorigenesis. In vivo and in vitro studies have revealed that metformin has a direct antitumor effect, which may depress tumor proliferation and induce the apoptosis, autophagy and cell cycle arrest of tumor cells. The mechanism underpinning the antitumor effect of metformin has not been well established. Studies have demonstrated that reducing insulin and insulin-like growth factor levels in the peripheral blood circulation may lead to the inhibition of phosphoinositide 3-kinase/Akt/mechanistic target of rapamycin (mTOR) signaling or activation of AMP-activated protein kinase, which inhibits mTOR signaling, a process that may be associated with the antitumor effect of metformin. The present review primarily focuses on the recent progress in understanding the function of metformin in tumor development.

          Related collections

          Most cited references97

          • Record: found
          • Abstract: found
          • Article: not found

          The insulin and insulin-like growth factor receptor family in neoplasia: an update.

          Although several early phase clinical trials raised enthusiasm for the use of insulin-like growth factor I receptor (IGF1R)-specific antibodies for cancer treatment, initial Phase III results in unselected patients have been disappointing. Further clinical studies may benefit from the use of predictive biomarkers to identify probable responders, the use of rational combination therapies and the consideration of alternative targeting strategies, such as ligand-specific antibodies and receptor-specific tyrosine kinase inhibitors. Targeting insulin and IGF signalling also needs to be considered in the broader context of the pathophysiology that relates obesity and diabetes to neoplasia, and the effects of anti-diabetic drugs, including metformin, on cancer risk and prognosis. The insulin and IGFI receptor family is also relevant to the development of PI3K-AKT pathway inhibitors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells.

            Recent population studies provide clues that the use of metformin may be associated with reduced incidence and improved prognosis of certain cancers. This drug is widely used in the treatment of type 2 diabetes, where it is often referred to as an "insulin sensitizer" because it not only lowers blood glucose but also reduces the hyperinsulinemia associated with insulin resistance. As insulin and insulin-like growth factors stimulate proliferation of many normal and transformed cell types, agents that facilitate signaling through these receptors would be expected to enhance proliferation. We show here that metformin acts as a growth inhibitor rather than an insulin sensitizer for epithelial cells. Breast cancer cells can be protected against metformin-induced growth inhibition by small interfering RNA against AMP kinase. This shows that AMP kinase pathway activation by metformin, recently shown to be necessary for metformin inhibition of gluconeogenesis in hepatocytes, is also involved in metformin-induced growth inhibition of epithelial cells. The growth inhibition was associated with decreased mammalian target of rapamycin and S6 kinase activation and a general decrease in mRNA translation. These results provide evidence for a mechanism that may contribute to the antineoplastic effects of metformin suggested by recent population studies and justify further work to explore potential roles for activators of AMP kinase in cancer prevention and treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells.

              Metformin is used for the treatment of type 2 diabetes because of its ability to lower blood glucose. The effects of metformin are explained by the activation of AMP-activated protein kinase (AMPK), which regulates cellular energy metabolism. Recently, we showed that metformin inhibits the growth of breast cancer cells through the activation of AMPK. Here, we show that metformin inhibits translation initiation. In MCF-7 breast cancer cells, metformin treatment led to a 30% decrease in global protein synthesis. Metformin caused a dose-dependent specific decrease in cap-dependent translation, with a maximal inhibition of 40%. Polysome profile analysis showed an inhibition of translation initiation as metformin treatment of MCF-7 cells led to a shift of mRNAs from heavy to light polysomes and a concomitant increase in the amount of 80S ribosomes. The decrease in translation caused by metformin was associated with mammalian target of rapamycin (mTOR) inhibition, and a decrease in the phosphorylation of S6 kinase, ribosomal protein S6, and eIF4E-binding protein 1. The effects of metformin on translation were mediated by AMPK, as treatment of cells with the AMPK inhibitor compound C prevented the inhibition of translation. Furthermore, translation in MDA-MB-231 cells, which lack the AMPK kinase LKB1, and in tuberous sclerosis complex 2 null (TSC2(-/-)) mouse embryonic fibroblasts was unaffected by metformin, indicating that LKB1 and TSC2 are involved in the mechanism of action of metformin. These results show that metformin-mediated AMPK activation leads to inhibition of mTOR and a reduction in translation initiation, thus providing a possible mechanism of action of metformin in the inhibition of cancer cell growth.
                Bookmark

                Author and article information

                Journal
                Oncol Lett
                Oncol Lett
                OL
                Oncology Letters
                D.A. Spandidos
                1792-1074
                1792-1082
                January 2018
                14 November 2017
                14 November 2017
                : 15
                : 1
                : 683-690
                Affiliations
                [1 ]Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
                [2 ]Department of Oncology, Rizhao Traditional Chinese Medicine Hospital of Shandong Traditional Chinese Medicine University, Rizhao, Shandong 276800, P.R. China
                [3 ]Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
                Author notes
                Correspondence to: Dr Zhen Cai, Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang 310003, P.R. China, E-mail: caiz@ 123456zju.edu.cn
                Article
                OL-0-0-7412
                10.3892/ol.2017.7412
                5772929
                29422962
                0193ef84-428a-4584-83fa-f5a13f58d32e
                Copyright: © Zi et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 03 September 2016
                : 22 September 2017
                Categories
                Review

                Oncology & Radiotherapy
                metformin,cancer,diabetes,mechanisms
                Oncology & Radiotherapy
                metformin, cancer, diabetes, mechanisms

                Comments

                Comment on this article