8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hall sensors batch-fabricated on all-CVD h-BN/graphene/h-BN heterostructures

      research-article
      , ,
      Scientific Reports
      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The two-dimensional (2D) material graphene is highly promising for Hall sensors due to its potential of having high charge carrier mobility and low carrier concentration at room temperature. Here, we report the scalable batch-fabrication of magnetic Hall sensors on graphene encapsulated in hexagonal boron nitride (h-BN) using commercially available large area CVD grown materials. The all-CVD grown h-BN/graphene/h-BN van der Waals heterostructures were prepared by layer transfer technique and Hall sensors were batch-fabricated with 1D edge metal contacts. The current-related Hall sensitivities up to 97 V/AT are measured at room temperature. The Hall sensors showed robust performance over the wafer scale with stable characteristics over six months in ambient environment. This work opens avenues for further development of growth and fabrication technologies of all-CVD 2D material heterostructures and allows further improvements in Hall sensor performance for practical applications.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Raman Fingerprint of Graphene

          Graphene is the two-dimensional (2d) building block for carbon allotropes of every other dimensionality. It can be stacked into 3d graphite, rolled into 1d nanotubes, or wrapped into 0d fullerenes. Its recent discovery in free state has finally provided the possibility to study experimentally its electronic and phonon properties. Here we show that graphene's electronic structure is uniquely captured in its Raman spectrum that clearly evolves with increasing number of layers. Raman fingerprints for single-, bi- and few-layer graphene reflect changes in the electronic structure and electron-phonon interactions and allow unambiguous, high-throughput, non-destructive identification of graphene layers, which is critically lacking in this emerging research area.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Boron nitride substrates for high-quality graphene electronics

            Graphene devices on standard SiO2 substrates are highly disordered, exhibiting characteristics far inferior to the expected intrinsic properties of graphene[1-12]. While suspending graphene above the substrate yields substantial improvement in device quality[13,14], this geometry imposes severe limitations on device architecture and functionality. Realization of suspended-like sample quality in a substrate supported geometry is essential to the future progress of graphene technology. In this Letter, we report the fabrication and characterization of high quality exfoliated mono- and bilayer graphene (MLG and BLG) devices on single crystal hexagonal boron nitride (h-BN) substrates, by a mechanical transfer process. Variable-temperature magnetotransport measurements demonstrate that graphene devices on h-BN exhibit enhanced mobility, reduced carrier inhomogeneity, and reduced intrinsic doping in comparison with SiO2-supported devices. The ability to assemble crystalline layered materials in a controlled way sets the stage for new advancements in graphene electronics and enables realization of more complex graphene heterostructres.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Hunting for Monolayer Boron Nitride: Optical and Raman Signatures

              We describe the identification of single- and few- layer boron nitride. Its optical contrast is much smaller than that of graphene but even monolayers are discernable by optimizing viewing conditions. Raman spectroscopy can be used to confirm BN monolayers. They exhibit an upshift in the fundamental Raman mode by up to 4 cm-1. The number of layers in thicker crystals can be counted by exploiting an integer-step increase in the Raman intensity and optical contrast.
                Bookmark

                Author and article information

                Contributors
                andre.dankert@chalmers.se
                saroj.dash@chalmers.se
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                9 November 2017
                9 November 2017
                2017
                : 7
                : 15231
                Affiliations
                ISNI 0000 0001 0775 6028, GRID grid.5371.0, Department of Microtechnology and Nanoscience, Chalmers University of Technology, ; SE-41296 Göteborg, Sweden
                Author information
                http://orcid.org/0000-0002-8024-3525
                http://orcid.org/0000-0001-7462-8405
                Article
                12277
                10.1038/s41598-017-12277-8
                5680335
                29123124
                012b72cb-dfeb-41e8-853b-108214be0569
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 18 January 2017
                : 6 September 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article