48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Machine learning approaches and databases for prediction of drug–target interaction: a survey paper

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug–target interactions (DTIs) by experiments alone. These approaches should be capable of identifying the potential DTIs in a timely manner. In this article, we describe the data required for the task of DTI prediction followed by a comprehensive catalog consisting of machine learning methods and databases, which have been proposed and utilized to predict DTIs. The advantages and disadvantages of each set of methods are also briefly discussed. Lastly, the challenges one may face in prediction of DTI using machine learning approaches are highlighted and we conclude by shedding some lights on important future research directions.

          Related collections

          Most cited references304

          • Record: found
          • Abstract: found
          • Article: not found

          SMOTE: Synthetic Minority Over-sampling Technique

          An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of ``normal'' examples with only a small percentage of ``abnormal'' or ``interesting'' examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Under-sampling of the majority (normal) class has been proposed as a good means of increasing the sensitivity of a classifier to the minority class. This paper shows that a combination of our method of over-sampling the minority (abnormal) class and under-sampling the majority (normal) class can achieve better classifier performance (in ROC space) than only under-sampling the majority class. This paper also shows that a combination of our method of over-sampling the minority class and under-sampling the majority class can achieve better classifier performance (in ROC space) than varying the loss ratios in Ripper or class priors in Naive Bayes. Our method of over-sampling the minority class involves creating synthetic minority class examples. Experiments are performed using C4.5, Ripper and a Naive Bayes classifier. The method is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and the ROC convex hull strategy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            DrugBank 5.0: a major update to the DrugBank database for 2018

            Abstract DrugBank (www.drugbank.ca) is a web-enabled database containing comprehensive molecular information about drugs, their mechanisms, their interactions and their targets. First described in 2006, DrugBank has continued to evolve over the past 12 years in response to marked improvements to web standards and changing needs for drug research and development. This year’s update, DrugBank 5.0, represents the most significant upgrade to the database in more than 10 years. In many cases, existing data content has grown by 100% or more over the last update. For instance, the total number of investigational drugs in the database has grown by almost 300%, the number of drug-drug interactions has grown by nearly 600% and the number of SNP-associated drug effects has grown more than 3000%. Significant improvements have been made to the quantity, quality and consistency of drug indications, drug binding data as well as drug-drug and drug-food interactions. A great deal of brand new data have also been added to DrugBank 5.0. This includes information on the influence of hundreds of drugs on metabolite levels (pharmacometabolomics), gene expression levels (pharmacotranscriptomics) and protein expression levels (pharmacoprotoemics). New data have also been added on the status of hundreds of new drug clinical trials and existing drug repurposing trials. Many other important improvements in the content, interface and performance of the DrugBank website have been made and these should greatly enhance its ease of use, utility and potential applications in many areas of pharmacological research, pharmaceutical science and drug education.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              KEGG: new perspectives on genomes, pathways, diseases and drugs

              KEGG (http://www.kegg.jp/ or http://www.genome.jp/kegg/) is an encyclopedia of genes and genomes. Assigning functional meanings to genes and genomes both at the molecular and higher levels is the primary objective of the KEGG database project. Molecular-level functions are stored in the KO (KEGG Orthology) database, where each KO is defined as a functional ortholog of genes and proteins. Higher-level functions are represented by networks of molecular interactions, reactions and relations in the forms of KEGG pathway maps, BRITE hierarchies and KEGG modules. In the past the KO database was developed for the purpose of defining nodes of molecular networks, but now the content has been expanded and the quality improved irrespective of whether or not the KOs appear in the three molecular network databases. The newly introduced addendum category of the GENES database is a collection of individual proteins whose functions are experimentally characterized and from which an increasing number of KOs are defined. Furthermore, the DISEASE and DRUG databases have been improved by systematic analysis of drug labels for better integration of diseases and drugs with the KEGG molecular networks. KEGG is moving towards becoming a comprehensive knowledge base for both functional interpretation and practical application of genomic information.
                Bookmark

                Author and article information

                Journal
                Brief Bioinform
                Brief Bioinform
                bib
                Briefings in Bioinformatics
                Oxford University Press
                1467-5463
                1477-4054
                January 2021
                17 January 2020
                17 January 2020
                : 22
                : 1
                : 247-269
                Affiliations
                [1 ] Department of Computational Medicine and Bioinformatics , University of Michigan, Ann Arbor, MI, 48109, USA
                [2 ] Michigan Institute for Data Science , University of Michigan, Ann Arbor, MI, 48109, USA
                [3 ] Department of Biostatistics , School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
                [4 ] Department of Pathology , University of Michigan, Ann Arbor, MI, 48109, USA
                [5 ] Department of Emergency Medicine , Medical School, University of Michigan, Ann Arbor, MI, 48109, USA
                [6 ] Department of Electrical Engineering and Computer Science , College of Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
                Author notes
                Corresponding author: Maryam Bagherian and Kayvan Najarian, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA. E-mail: bmaryam@ 123456umich.edu
                Article
                bbz157
                10.1093/bib/bbz157
                7820849
                31950972
                009c2274-18f8-4f1c-b753-ad98df0ded4a
                © The Author(s) 2020. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 4 September 2019
                : 1 November 2019
                : 7 November 2019
                Page count
                Pages: 23
                Funding
                Funded by: National Institute of Environmental Health Sciences, DOI 10.13039/100000066;
                Award ID: P30 ES017885
                Categories
                AcademicSubjects/SCI01060
                Review Article

                Bioinformatics & Computational biology
                machine learning,drug–target interaction prediction,dti software,dti database

                Comments

                Comment on this article