Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor.

      Proceedings of the National Academy of Sciences of the United States of America
      Animals, Bacillus thuringiensis, Bacterial Proteins, genetics, metabolism, Bacterial Toxins, Binding, Competitive, Endotoxins, Escherichia coli, Gene Expression Regulation, Bacterial, Genes, Bacterial, Hemolysin Proteins, Insecticide Resistance, Lepidoptera, Microvilli, Pest Control, Biological

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The biochemical mechanism for resistance to Bacillus thuringiensis crystal proteins was studied in a field population of diamondback moths (Plutella xylostella) with a reduced susceptibility to the bioinsecticidal spray. The toxicity and binding characteristics of three crystal proteins [CryIA(b), CryIB, and CryIC] were compared between the field population and a laboratory strain. The field population proved resistant (greater than 200-fold compared with the laboratory strain) to CryIA(b), one of the crystal proteins in the insecticidal formulation. Binding studies showed that the two strains differ in a membrane receptor that recognizes CryIA(b). This crystal protein did not bind to the brush-border membrane of the midgut epithelial cells of the field population, either because of strongly reduced binding affinity or because of the complete absence of the receptor molecule. Both strains proved fully susceptible to the CryIB and CryIC crystal proteins, which were not present in the B. thuringiensis formulation used in the field. Characteristics of CryIB and CryIC binding to brush-border membranes of midgut epithelial cells were virtually identical in the laboratory and the field population.

          Related collections

          Author and article information

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content213

          Cited by52