1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Swine manure facilitates the spread of antibiotic resistome including tigecycline-resistant tet(X) variants to farm workers and receiving environment.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The prevalence of antibiotic resistance genes (ARGs) in livestock and poultry manure is a severe threat to human health. However, the comprehensive characterization of antibiotic resistance in swine, workers, and the receiving environment is still lacking in the actual breeding environment. Hence, the ARG profile and the potential bacterial hosts producing among swine manure (including sows, piglets, finishing pigs, and nursery pigs), worker feces, and the receiving environment (including sediment and vegetable soil) were comprehensively analyzed based on the metagenomic method. The results showed that swine manure exhibited the high levels of richness and diversity of ARGs. Inactivating tetracycline resistance genes such as tet(X), tet(X1), and tet(X10) were prevalent on swine farms. Workers and the environment were the primary recipients of ARGs, and shared ARGs accounted for at least 90% of their ARG abundances. Network analysis revealed that Escherichia, Acinetobacter, and Erysipelothrix were the most dominant genera co-occurring with specific shared ARGs. The abundance of coexisting ARGs in swine at different developmental stages accounted for 76.4% to 90.8% of the shared ARGs in swine, workers, and environmental samples. The Mantel test revealed that Firmicutes and Proteobacteria had a significant correlation with the ARG profiles. In addition, variation partitioning analysis (VPA) showed that the joint effects of mobile genetic elements (MGEs) and bacterial communities accounted for 24.7% of the resistome variation and played a significant role in the ARG profiles. These results improve our understanding of the transmission and persistence of ARGs in the actual breeding environment.

          Related collections

          Author and article information

          Journal
          Sci Total Environ
          The Science of the total environment
          Elsevier BV
          1879-1026
          0048-9697
          Feb 20 2022
          : 808
          Affiliations
          [1 ] Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
          [2 ] Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China. Electronic address: zlzeng@scau.edu.cn.
          [3 ] Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China. Electronic address: xiongwg@scau.edu.cn.
          Article
          S0048-9697(21)07233-8
          10.1016/j.scitotenv.2021.152157
          34871697
          b196b42a-6661-4b57-8144-b1a337894dfb
          Copyright © 2021. Published by Elsevier B.V.
          History

          Antibiotic resistome,Environment,Human,Manure,Swine farm,Tet(X)
          Antibiotic resistome, Environment, Human, Manure, Swine farm, Tet(X)

          Comments

          Comment on this article