6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The relationship of human tissue microRNAs with those from body fluids

      ,
      Scientific Reports
      Springer Science and Business Media LLC

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is known that many microRNAs (miRNAs) stably exist in various body fluids, however, the relationship of body fluids miRNAs (BF-miRNAs) with those from tissues (T-miRNAs) remains largely unclear but is important for understanding the potential of BF-miRNAs to be biomarkers of specific diseases. Here by analyzing miRNA expression data from 40 human healthy tissues and those from human body fluids, including plasma, serum, urine, bile, and feces, we revealed a positive correlation between BF-miRNAs and T-miRNAs. Moreover, plasma and serum have the most communication with pericardium, adipose, liver, and spleen. Urinary miRNAs show the highest correlation with kidney miRNAs. For fecal miRNAs, gastrointestinal tract (colon, ileum, jejunum, small intestine, stomach, proximal colon, duodenum, and distal colon) miRNAs show the strongest correlation. Moreover, miRNA set enrichment analysis revealed that highly expressed fecal miRNAs are mostly associated with gastric and colon cancers etc. Additionally, bile miRNAs from suspected cholangiocarcinoma patients show a positive correlation with the cholangiocarcinoma tumor tissue. Interestingly, the relationship of BF-miRNAs and T-miRNAs shows significant sex differences. Serum miRNAs showed higher correlation with T-miRNAs in males, whereas plasma miRNAs and urine miRNAs showed higher correlations with T-miRNAs in females. These findings together indicate a potential role of BF-miRNAs as biomarkers to monitor corresponding specific human diseases.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Characterization of microRNA expression profiles in normal human tissues

          Background Measuring the quantity of miRNAs in tissues of different physiological and pathological conditions is an important first step to investigate the functions of miRNAs. Matched samples from normal state can provide essential baseline references to analyze the variation of miRNA abundance. Results We provided expression data of 345 miRNAs in 40 normal human tissues, which identified universally expressed miRNAs, and several groups of miRNAs expressed exclusively or preferentially in certain tissue types. Many miRNAs with co-regulated expression patterns are located within the same genomic clusters, and candidate transcriptional factors that control the pattern of their expression may be identified by a comparative genomic strategy. Hierarchical clustering of normal tissues by their miRNA expression profiles basically followed the structure, anatomical locations, and physiological functions of the organs, suggesting that functions of a miRNA could be appreciated by linking to the biologies of the tissues in which it is uniquely expressed. Many predicted target genes of miRNAs that had specific reduced expression in brain and peripheral blood mononuclear cells are required for embryonic development of the nervous and hematopoietic systems based on database search. Conclusion We presented a global view of tissue distribution of miRNAs in relation to their chromosomal locations and genomic structures. We also described evidence from the cis-regulatory elements and the predicted target genes of miRNAs to support their tissue-specific functional roles to regulate the physiologies of the normal tissues in which they are expressed.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Toward the blood-borne miRNome of human diseases.

            In a multicenter study, we determined the expression profiles of 863 microRNAs by array analysis of 454 blood samples from human individuals with different cancers or noncancer diseases, and validated this 'miRNome' by quantitative real-time PCR. We detected consistently deregulated profiles for all tested diseases; pathway analysis confirmed disease association of the respective microRNAs. We observed significant correlations (P = 0.004) between the genomic location of disease-associated genetic variants and deregulated microRNAs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Small RNA Sequencing across Diverse Biofluids Identifies Optimal Methods for exRNA Isolation

              Poor reproducibility within and across studies arising from lack of knowledge regarding the performance of extracellular RNA (exRNA) isolation methods has hindered progress in the exRNA field. A systematic comparison of ten exRNA isolation methods across five biofluids revealed marked differences in the complexity and reproducibility of the resulting small RNAseq profiles. The relative efficiency with which each method accessed different exRNA carrier subclasses was determined by estimating the proportions of extracellular vesicle- (EV), ribonucleoprotein-(RNP)-, and high-density lipoprotein- (HDL) specific miRNA signatures in each profile. An interactive web-based application (miRDaR) was developed to help investigators select the optimal exRNA isolation method for their studies. miRDar provides comparative statistics for all expressed miRNAs or a selected subset of miRNAs in the desired biofluid for each exRNA isolation method, and returns a ranked list of exRNA isolation methods prioritized by complexity, expression level and reproducibility. These results will improve reproducibility and stimulate further progress in exRNA biomarker development. A systematic comparison of 10 extracellular RNA isolation methods across 5 biofluids will aid researchers in selecting optimal approaches for individual studies with the overall goal of enhancing reliability and reproducibility for a rapidly growing field.
                Bookmark

                Author and article information

                Journal
                Scientific Reports
                Sci Rep
                Springer Science and Business Media LLC
                2045-2322
                December 2020
                March 27 2020
                December 2020
                : 10
                : 1
                Article
                10.1038/s41598-020-62534-6
                139bb472-e9da-45b4-8571-43a547a44dac
                © 2020

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article