4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Crystal structure of a deubiquitinating enzyme (human UCH-L3) at 1.8 A resolution.

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ubiquitin C-terminal hydrolases catalyze the removal of adducts from the C-terminus of ubiquitin. We have determined the crystal structure of the recombinant human Ubiquitin C-terminal Hydrolase (UCH-L3) by X-ray crystallography at 1.8 A resolution. The structure is comprised of a central antiparallel beta-sheet flanked on both sides by alpha-helices. The beta-sheet and one of the helices resemble the well-known papain-like cysteine proteases, with the greatest similarity to cathepsin B. This similarity includes the UCH-L3 active site catalytic triad of Cys95, His169 and Asp184, and the oxyanion hole residue Gln89. Papain and UCH-L3 differ, however, in strand and helix connectivity, which in the UCH-L3 structure includes a disordered 20 residue loop (residues 147-166) that is positioned over the active site and may function in the definition of substrate specificity. Based upon analogy with inhibitor complexes of the papain-like enzymes, we propose a model describing the binding of ubiquitin to UCH-L3. The UCH-L3 active site cleft appears to be masked in the unliganded structure by two different segments of the enzyme (residues 9-12 and 90-94), thus implying a conformational change upon substrate binding and suggesting a mechanism to limit non-specific hydrolysis.

          Related collections

          Author and article information

          Journal
          EMBO J
          The EMBO journal
          Oxford University Press (OUP)
          0261-4189
          0261-4189
          Jul 01 1997
          : 16
          : 13
          Affiliations
          [1 ] Biochemistry Department, University of Utah, Salt Lake City 84132, USA.
          Article
          10.1093/emboj/16.13.3787
          1170002
          9233788
          e1de4e69-415f-418b-8a69-bb56c4509446
          History

          Comments

          Comment on this article