41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Structural Basis of Ubiquitin Recognition by the Deubiquitinating Protease USP2

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Deubiquitinating proteases reverse protein ubiquitination and rescue their target proteins from destruction by the proteasome. USP2, a cysteine protease and a member of the ubiquitin specific protease family, is overexpressed in prostate cancer and stabilizes fatty acid synthase, which has been associated with the malignancy of some aggressive prostate cancers. Here, we report the structure of the human USP2 catalytic domain in complex with ubiquitin. Ubiquitin uses two major sites for the interaction with the protease. Both sites are required simultaneously, as shown by USP2 inhibition assays with peptides and ubiquitin mutants. In addition, a layer of ordered water molecules mediates key interactions between ubiquitin and USP2. As several of those molecules are found at identical positions in the previously solved USP7/ubiquitin-aldehyde complex structure, we suggest a general mechanism of water-mediated ubiquitin recognition by USPs.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          A genomic and functional inventory of deubiquitinating enzymes.

          Posttranslational modification of proteins by the small molecule ubiquitin is a key regulatory event, and the enzymes catalyzing these modifications have been the focus of many studies. Deubiquitinating enzymes, which mediate the removal and processing of ubiquitin, may be functionally as important but are less well understood. Here, we present an inventory of the deubiquitinating enzymes encoded in the human genome. In addition, we review the literature concerning these enzymes, with particular emphasis on their function, specificity, and the regulation of their activity.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants

            W Kabsch (1993)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanism and function of deubiquitinating enzymes.

              Attachment of ubiquitin to proteins is a crucial step in many cellular regulatory mechanisms and contributes to numerous biological processes, including embryonic development, the cell cycle, growth control, and prevention of neurodegeneration. In these diverse regulatory settings, the most widespread mechanism of ubiquitin action is probably in the context of protein degradation. Polyubiquitin attachment targets many intracellular proteins for degradation by the proteasome, and (mono)ubiquitination is often required for down-regulating plasma membrane proteins by targeting them to the vacuole (lysosome). Ubiquitin-protein conjugates are highly dynamic structures. While an array of enzymes directs the conjugation of ubiquitin to substrates, there are also dozens of deubiquitinating enzymes (DUBs) that can reverse the process. Several lines of evidence indicate that DUBs are important regulators of the ubiquitin system. These enzymes are responsible for processing inactive ubiquitin precursors, proofreading ubiquitin-protein conjugates, removing ubiquitin from cellular adducts, and keeping the 26S proteasome free of inhibitory ubiquitin chains. The present review focuses on recent discoveries that have led to a better understanding the mechanisms and physiological roles of this diverse and still poorly understood group of enzymes. We also discuss briefly some of the proteases that act on ubiquitin-like protein (UBL) conjugates and compare them to DUBs.
                Bookmark

                Author and article information

                Contributors
                Journal
                Structure
                Structure
                Structure (London, England : 1993)
                Elsevier Ltd.
                0969-2126
                1878-4186
                15 August 2006
                August 2006
                15 August 2006
                : 14
                : 8
                : 1293-1302
                Affiliations
                [1 ]Protease Platform, Novartis Institutes for BioMedical Research, 4002 Basel, Switzerland
                [2 ]Discovery Technologies, Novartis Institutes for BioMedical Research, 4002 Basel, Switzerland
                Author notes
                []Corresponding author martin.renatus@ 123456novartis.com
                Article
                S0969-2126(06)00295-4
                10.1016/j.str.2006.06.012
                7126176
                16905103
                9b60cf2f-294e-4fa8-bd8c-66bc1be2ccf7
                Copyright © 2006 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 10 April 2006
                : 11 June 2006
                : 16 June 2006
                Categories
                Article

                Molecular biology
                Molecular biology

                Comments

                Comment on this article