12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Imaging-Based Machine Learning Analysis of Patient-Derived Tumor Organoid Drug Response

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Three-quarters of compounds that enter clinical trials fail to make it to market due to safety or efficacy concerns. This statistic strongly suggests a need for better screening methods that result in improved translatability of compounds during the preclinical testing period. Patient-derived organoids have been touted as a promising 3D preclinical model system to impact the drug discovery pipeline, particularly in oncology. However, assessing drug efficacy in such models poses its own set of challenges, and traditional cell viability readouts fail to leverage some of the advantages that the organoid systems provide. Consequently, phenotypically evaluating complex 3D cell culture models remains difficult due to intra- and inter-patient organoid size differences, cellular heterogeneities, and temporal response dynamics. Here, we present an image-based high-content assay that provides object level information on 3D patient-derived tumor organoids without the need for vital dyes. Leveraging computer vision, we segment and define organoids as independent regions of interest and obtain morphometric and textural information per organoid. By acquiring brightfield images at different timepoints in a robust, non-destructive manner, we can track the dynamic response of individual organoids to various drugs. Furthermore, to simplify the analysis of the resulting large, complex data files, we developed a web-based data visualization tool, the Organoizer, that is available for public use. Our work demonstrates the feasibility and utility of using imaging, computer vision and machine learning to determine the vital status of individual patient-derived organoids without relying upon vital dyes, thus taking advantage of the characteristics offered by this preclinical model system.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Welcome to the Tidyverse

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium.

            We previously established long-term culture conditions under which single crypts or stem cells derived from mouse small intestine expand over long periods. The expanding crypts undergo multiple crypt fission events, simultaneously generating villus-like epithelial domains that contain all differentiated types of cells. We have adapted the culture conditions to grow similar epithelial organoids from mouse colon and human small intestine and colon. Based on the mouse small intestinal culture system, we optimized the mouse and human colon culture systems. Addition of Wnt3A to the combination of growth factors applied to mouse colon crypts allowed them to expand indefinitely. Addition of nicotinamide, along with a small molecule inhibitor of Alk and an inhibitor of p38, were required for long-term culture of human small intestine and colon tissues. The culture system also allowed growth of mouse Apc-deficient adenomas, human colorectal cancer cells, and human metaplastic epithelia from regions of Barrett's esophagus. We developed a technology that can be used to study infected, inflammatory, or neoplastic tissues from the human gastrointestinal tract. These tools might have applications in regenerative biology through ex vivo expansion of the intestinal epithelia. Studies of these cultures indicate that there is no inherent restriction in the replicative potential of adult stem cells (or a Hayflick limit) ex vivo. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Organoid cultures derived from patients with advanced prostate cancer.

              The lack of in vitro prostate cancer models that recapitulate the diversity of human prostate cancer has hampered progress in understanding disease pathogenesis and therapy response. Using a 3D organoid system, we report success in long-term culture of prostate cancer from biopsy specimens and circulating tumor cells. The first seven fully characterized organoid lines recapitulate the molecular diversity of prostate cancer subtypes, including TMPRSS2-ERG fusion, SPOP mutation, SPINK1 overexpression, and CHD1 loss. Whole-exome sequencing shows a low mutational burden, consistent with genomics studies, but with mutations in FOXA1 and PIK3R1, as well as in DNA repair and chromatin modifier pathways that have been reported in advanced disease. Loss of p53 and RB tumor suppressor pathway function are the most common feature shared across the organoid lines. The methodology described here should enable the generation of a large repertoire of patient-derived prostate cancer lines amenable to genetic and pharmacologic studies. Copyright © 2014 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                21 December 2021
                2021
                : 11
                : 771173
                Affiliations
                [1] 1 Lawrence J. Ellison Institute for Transformative Medicine of USC , Los Angeles, CA, United States
                [2] 2 Department of Medicine, University of California San Diego , La Jolla, CA, United States
                [3] 3 Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California , Los Angeles, CA, United States
                Author notes

                Edited by: Mónica Hebe Vazquez-Levin, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

                Reviewed by: Ming-Zhu Jin, Shanghai Jiao Tong University, China; Tiffany Heaster, University of Wisconsin-Madison, United States

                *Correspondence: Shannon M. Mumenthaler, smumenth@ 123456usc.edu

                †These authors share last authorship

                This article was submitted to Cancer Molecular Targets and Therapeutics, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2021.771173
                8724556
                d3d3ee3e-d4f6-44cb-a77f-4f7562b1d2ca
                Copyright © 2021 Spiller, Ung, Kim, Patsch, Lau, Strelez, Doshi, Choung, Choi, Juarez Rosales, Lenz, Matasci and Mumenthaler

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 07 September 2021
                : 02 December 2021
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 50, Pages: 10, Words: 5293
                Categories
                Oncology
                Original Research

                Oncology & Radiotherapy
                patient-derived organoids (pdo),high content imaging,label-free analysis,machine learning,drug response

                Comments

                Comment on this article