15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dysregulation of Mitochondrial Ca2+ Uptake and Sarcolemma Repair Underlie Muscle Weakness and Wasting in Patients and Mice Lacking MICU1

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          SUMMARY Muscle function is regulated by Ca2+, which mediates excitation-contraction coupling, energy metabolism, adaptation to exercise, and sarcolemmal repair. Several of these actions rely on Ca2+ delivery to the mitochondrial matrix via the mitochondrial Ca2+ uniporter, the pore of which is formed by mitochondrial calcium uniporter (MCU). MCU’s gatekeeping and cooperative activation are controlled by MICU1. Loss-of-protein mutation in MICU1 causes a neuromuscular disease. To determine the mechanisms underlying the muscle impairments, we used MICU1 patient cells and skeletal muscle-specific MICU1 knockout mice. Both these models show a lower threshold for MCU-mediated Ca2+ uptake. Lack of MICU1 is associated with impaired mitochondrial Ca2+ uptake during excitation-contraction, aerobic metabolism impairment, muscle weakness, fatigue, and myofiber damage during physical activity. MICU1 deficit compromises mitochondrial Ca2+ uptake during sarcolemmal injury, which causes ineffective repair of the damaged myofibers. Thus, dysregulation of mitochondrial Ca2+ uptake hampers myofiber contractile function, likely through energy metabolism and membrane repair.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake

          Mitochondrial calcium uptake plays a central role in cell physiology by stimulating ATP production, shaping cytosolic calcium transients, and regulating cell death. The biophysical properties of mitochondrial calcium uptake have been studied in detail, but the underlying proteins remain elusive. Here, we utilize an integrative strategy to predict human genes involved in mitochondrial calcium entry based on clues from comparative physiology, evolutionary genomics, and organelle proteomics. RNA interference against 13 top candidates highlighted one gene that we now call mitochondrial calcium uptake 1 (MICU1). Silencing MICU1 does not disrupt mitochondrial respiration or membrane potential but abolishes mitochondrial calcium entry in intact and permeabilized cells, and attenuates the metabolic coupling between cytosolic calcium transients and activation of matrix dehydrogenases. MICU1 is associated with the organelle’s inner membrane and has two canonical EF hands that are essential for its activity, suggesting a role in calcium sensing. MICU1 represents the founding member of a set of proteins required for high capacity mitochondrial calcium entry. Its discovery may lead to the complete molecular characterization of mitochondrial calcium uptake pathways, and offers genetic strategies for understanding their contribution to normal physiology and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            EMRE is an essential component of the mitochondrial calcium uniporter complex.

            The mitochondrial uniporter is a highly selective calcium channel in the organelle's inner membrane. Its molecular components include the EF-hand-containing calcium-binding proteins mitochondrial calcium uptake 1 (MICU1) and MICU2 and the pore-forming subunit mitochondrial calcium uniporter (MCU). We sought to achieve a full molecular characterization of the uniporter holocomplex (uniplex). Quantitative mass spectrometry of affinity-purified uniplex recovered MICU1 and MICU2, MCU and its paralog MCUb, and essential MCU regulator (EMRE), a previously uncharacterized protein. EMRE is a 10-kilodalton, metazoan-specific protein with a single transmembrane domain. In its absence, uniporter channel activity was lost despite intact MCU expression and oligomerization. EMRE was required for the interaction of MCU with MICU1 and MICU2. Hence, EMRE is essential for in vivo uniporter current and additionally bridges the calcium-sensing role of MICU1 and MICU2 with the calcium-conducting role of MCU.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter (MCU)

              Mitochondrial calcium has been postulated to regulate a wide range of processes from bioenergetics to cell death. Here, we characterize a mouse model that lacks expression of the recently discovered mitochondrial calcium uniporter (MCU). Mitochondria derived from MCU-/- mice have no apparent capacity to rapidly uptake calcium. While basal metabolism appears unaffected, the skeletal muscle of MCU-/- mice exhibited alterations in the phosphorylation and activity of pyruvate dehydrogenase. In addition, MCU-/- mice exhibited marked impairment in their ability to perform strenuous work. We further show that mitochondria from MCU-/- mice lacked evidence for calcium-induced permeability transition pore (PTP) opening. The lack of PTP opening does not appear to protect MCU-/- cells and tissues from cell death, although MCU-/- hearts fail to respond to the PTP inhibitor cyclosporin A (CsA). Taken together, these results clarify how acute alterations in mitochondrial matrix calcium can regulate mammalian physiology.
                Bookmark

                Author and article information

                Journal
                Cell Reports
                Cell Reports
                Elsevier BV
                22111247
                October 2019
                October 2019
                : 29
                : 5
                : 1274-1286.e6
                Article
                10.1016/j.celrep.2019.09.063
                52d7bada-9066-4d72-9123-b4492380ec94
                © 2019

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article