111
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Completing bacterial genome assemblies with multiplex MinION sequencing

      Microbial Genomics
      Microbiology Society

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM

          Heng Li (2013)
          Summary: BWA-MEM is a new alignment algorithm for aligning sequence reads or long query sequences against a large reference genome such as human. It automatically chooses between local and end-to-end alignments, supports paired-end reads and performs chimeric alignment. The algorithm is robust to sequencing errors and applicable to a wide range of sequence lengths from 70bp to a few megabases. For mapping 100bp sequences, BWA-MEM shows better performance than several state-of-art read aligners to date. Availability and implementation: BWA-MEM is implemented as a component of BWA, which is available at http://github.com/lh3/bwa. Contact: hengli@broadinstitute.org
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Gastrointestinal Carriage Is a Major Reservoir of Klebsiella pneumoniae Infection in Intensive Care Patients

            Summary Klebsiella pneumoniae colonization is a significant risk factor for infection in ICU, with approximately half of K. pneumoniae infections resulting from patients’ own microbiota. Screening for colonization on admission could limit risk of infection in the colonized patient and others.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island.

              Short-read, high-throughput sequencing technology cannot identify the chromosomal position of repetitive insertion sequences that typically flank horizontally acquired genes such as bacterial virulence genes and antibiotic resistance genes. The MinION nanopore sequencer can produce long sequencing reads on a device similar in size to a USB memory stick. Here we apply a MinION sequencer to resolve the structure and chromosomal insertion site of a composite antibiotic resistance island in Salmonella Typhi Haplotype 58. Nanopore sequencing data from a single 18-h run was used to create a scaffold for an assembly generated from short-read Illumina data. Our results demonstrate the potential of the MinION device in clinical laboratories to fully characterize the epidemic spread of bacterial pathogens.
                Bookmark

                Author and article information

                Journal
                10.1099/mgen.0.000132
                http://creativecommons.org/so-override

                Comments

                Comment on this article