12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Harnessing CD16-Mediated NK Cell Functions to Enhance Therapeutic Efficacy of Tumor-Targeting mAbs

      review-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Natural Killer (NK) cells play a major role in cancer immunotherapy based on tumor-targeting mAbs. NK cell-mediated tumor cell killing and cytokine secretion are powerfully stimulated upon interaction with IgG-opsonized tumor cells, through the aggregation of FcγRIIIA/CD16 IgG receptor. Advances in basic and translational NK cell biology have led to the development of strategies that, by improving mAb-dependent antitumor responses, may overcome the current limitations of antibody therapy attributable to tolerance, immunosuppressive microenvironment, and genotypic factors. This review provides an overview of the immunotherapeutic strategies being pursued to improve the efficacy of mAb-induced NK antitumor activity. The exploitation of antibody combinations, antibody-based molecules, used alone or combined with adoptive NK cell therapy, will be uncovered. Within the landscape of NK cell heterogeneity, we stress the role of memory NK cells as promising effectors in the next generation of immunotherapy with the aim to obtain long-lasting tumor control.

          Abstract

          Natural killer (NK) cells hold a pivotal role in tumor-targeting monoclonal antibody (mAb)-based activity due to the expression of CD16, the low-affinity receptor for IgG. Indeed, beyond exerting cytotoxic function, activated NK cells also produce an array of cytokines and chemokines, through which they interface with and potentiate adaptive immune responses. Thus, CD16-activated NK cells can concur to mAb-dependent “vaccinal effect”, i.e., the development of antigen-specific responses, which may be highly relevant in maintaining long-term protection of treated patients. On this basis, the review will focus on strategies aimed at potentiating NK cell-mediated antitumor functions in tumor-targeting mAb-based regimens, represented by (a) mAb manipulation strategies, aimed at augmenting recruitment and efficacy of NK cells, such as Fc-engineering, and the design of bi- or trispecific NK cell engagers and (b) the possible exploitation of memory NK cells, whose distinctive characteristics (enhanced responsiveness to CD16 engagement, longevity, and intrinsic resistance to the immunosuppressive microenvironment) may maximize therapeutic mAb antitumor efficacy.

          Related collections

          Most cited references252

          • Record: found
          • Abstract: found
          • Article: not found

          Transforming Growth Factor-β Signaling in Immunity and Cancer

          Transforming growth factor (TGF)-β is a crucial enforcer of immune homeostasis and tolerance, inhibiting the expansion and function of many components of the immune system. Perturbations in TGF-β signaling underlie inflammatory diseases and promote tumor emergence. TGF-β is also central to immune suppression within the tumor microenvironment, and recent studies have revealed roles in tumor immune evasion and poor responses to cancer immunotherapy. Here, we present an overview of the complex biology of the TGF-β family and its context-dependent nature. Then, focusing on cancer, we discuss the roles of TGF-β signaling in distinct immune cell types and how this knowledge is being leveraged to unleash the immune system against the tumor.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control

            Summary Conventional type 1 dendritic cells (cDC1) are critical for antitumor immunity, and their abundance within tumors is associated with immune-mediated rejection and the success of immunotherapy. Here, we show that cDC1 accumulation in mouse tumors often depends on natural killer (NK) cells that produce the cDC1 chemoattractants CCL5 and XCL1. Similarly, in human cancers, intratumoral CCL5, XCL1, and XCL2 transcripts closely correlate with gene signatures of both NK cells and cDC1 and are associated with increased overall patient survival. Notably, tumor production of prostaglandin E2 (PGE2) leads to evasion of the NK cell-cDC1 axis in part by impairing NK cell viability and chemokine production, as well as by causing downregulation of chemokine receptor expression in cDC1. Our findings reveal a cellular and molecular checkpoint for intratumoral cDC1 recruitment that is targeted by tumor-derived PGE2 for immune evasion and that could be exploited for cancer therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors

              Anti-CD19 chimeric antigen receptor (CAR) T-cell therapy has shown remarkable clinical efficacy in B-cell cancers. However, CAR T cells can induce substantial toxic effects, and the manufacture of the cells is complex. Natural killer (NK) cells that have been modified to express an anti-CD19 CAR have the potential to overcome these limitations. In this phase 1 and 2 trial, we administered HLA-mismatched anti-CD19 CAR-NK cells derived from cord blood to 11 patients with relapsed or refractory CD19-positive cancers (non-Hodgkin’s lymphoma or chronic lymphocytic leukemia [CLL]). NK cells were transduced with a retroviral vector expressing genes that encode anti-CD19 CAR, interleukin-15, and inducible caspase 9 as a safety switch. The cells were expanded ex vivo and administered in a single infusion at one of three doses (1×10 5 , 1×10 6 , or 1×10 7 CAR-NK cells per kilogram of body weight) after lymphodepleting chemotherapy. The administration of CAR-NK cells was not associated with the development of cytokine release syndrome, neurotoxicity, or graft-versus-host disease, and there was no increase in the levels of inflammatory cytokines, including interleukin-6, over baseline. The maximum tolerated dose was not reached. Of the 11 patients who were treated, 8 (73%) had a response; of these patients, 7 (4 with lymphoma and 3 with CLL) had a complete remission, and 1 had remission of the Richter’s transformation component but had persistent CLL. Responses were rapid and seen within 30 days after infusion at all dose levels. The infused CAR-NK cells expanded and persisted at low levels for at least 12 months. Among 11 patients with relapsed or refractory CD19-positive cancers, a majority had a response to treatment with CAR-NK cells without the development of major toxic effects. (Funded by the M.D. Anderson Cancer Center CLL and Lymphoma Moonshot and the National Institutes of Health; ClinicalTrials.gov number, NCT03056339 .)
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                20 May 2021
                May 2021
                : 13
                : 10
                : 2500
                Affiliations
                [1 ]Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; cristina.capuano@ 123456uniroma1.it (C.C.); chiara.pighi@ 123456uniroma1.it (C.P.); simone.battella@ 123456reithera.com (S.B.); davide.defedericis@ 123456uniroma1.it (D.D.F.)
                [2 ]ReiThera Srl, 00128 Rome, Italy
                [3 ]Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
                Author notes
                [†]

                The first two authors contributed equally to this work.

                [‡]

                The last two authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0002-6747-3836
                https://orcid.org/0000-0001-6163-0135
                https://orcid.org/0000-0002-1882-1451
                https://orcid.org/0000-0003-2660-1456
                https://orcid.org/0000-0002-1467-1417
                Article
                cancers-13-02500
                10.3390/cancers13102500
                8161310
                111e5d84-d991-4425-95cd-a8bc188b2289
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 27 April 2021
                : 18 May 2021
                Categories
                Review

                tumor-targeting mab,memory nk cells,vaccinal effect,ifnγ,cd16,adcc,combinatory immunotherapeutic approach

                Comments

                Comment on this article