45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Controversies in acute kidney injury: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Conference

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
      Kidney International
      Elsevier BV

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P2">In 2012, Kidney Disease: Improving Global Outcomes (KDIGO) published a guideline on the classification and management of acute kidney injury (AKI). The guideline was derived from evidence available through February 2011. Since then, new evidence has emerged that has important implications for clinical practice in diagnosing and managing AKI. In April of 2019, KDIGO held a controversies conference entitled <i>Acute Kidney Injury</i> with the following goals: determine best practices and areas of uncertainty in treating AKI; review key relevant literature published since the 2012 KDIGO AKI guideline; address ongoing controversial issues; identify new topics or issues to be revisited for the next iteration of the KDIGO AKI guideline; and outline research needed to improve AKI management. Here, we present the findings of this conference and describe key areas that future guidelines may address. </p>

          Related collections

          Most cited references151

          • Record: found
          • Abstract: found
          • Article: not found

          Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study.

          Current reports on acute kidney injury (AKI) in the intensive care unit (ICU) show wide variation in occurrence rate and are limited by study biases such as use of incomplete AKI definition, selected cohorts, or retrospective design. Our aim was to prospectively investigate the occurrence and outcomes of AKI in ICU patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury

            Introduction Acute kidney injury (AKI) can evolve quickly and clinical measures of function often fail to detect AKI at a time when interventions are likely to provide benefit. Identifying early markers of kidney damage has been difficult due to the complex nature of human AKI, in which multiple etiologies exist. The objective of this study was to identify and validate novel biomarkers of AKI. Methods We performed two multicenter observational studies in critically ill patients at risk for AKI - discovery and validation. The top two markers from discovery were validated in a second study (Sapphire) and compared to a number of previously described biomarkers. In the discovery phase, we enrolled 522 adults in three distinct cohorts including patients with sepsis, shock, major surgery, and trauma and examined over 300 markers. In the Sapphire validation study, we enrolled 744 adult subjects with critical illness and without evidence of AKI at enrollment; the final analysis cohort was a heterogeneous sample of 728 critically ill patients. The primary endpoint was moderate to severe AKI (KDIGO stage 2 to 3) within 12 hours of sample collection. Results Moderate to severe AKI occurred in 14% of Sapphire subjects. The two top biomarkers from discovery were validated. Urine insulin-like growth factor-binding protein 7 (IGFBP7) and tissue inhibitor of metalloproteinases-2 (TIMP-2), both inducers of G1 cell cycle arrest, a key mechanism implicated in AKI, together demonstrated an AUC of 0.80 (0.76 and 0.79 alone). Urine [TIMP-2]·[IGFBP7] was significantly superior to all previously described markers of AKI (P 0.72. Furthermore, [TIMP-2]·[IGFBP7] significantly improved risk stratification when added to a nine-variable clinical model when analyzed using Cox proportional hazards model, generalized estimating equation, integrated discrimination improvement or net reclassification improvement. Finally, in sensitivity analyses [TIMP-2]·[IGFBP7] remained significant and superior to all other markers regardless of changes in reference creatinine method. Conclusions Two novel markers for AKI have been identified and validated in independent multicenter cohorts. Both markers are superior to existing markers, provide additional information over clinical variables and add mechanistic insight into AKI. Trial registration ClinicalTrials.gov number NCT01209169.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Acute kidney disease and renal recovery: consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup

              Acute kidney injury (AKI) and chronic kidney disease are increasingly recognized as interconnected entities and the term acute kidney disease (AKD) has been proposed to define ongoing pathophysiologic processes following an episode of AKI. In this Consensus statement, the Acute Disease Quality Initiative 16 Workgroup propose definitions and staging criteria for AKD, and strategies for the management of affected patients. They also make recommendations for areas of future research with the aims of improving understanding of the underlying processes and improving outcomes.
                Bookmark

                Author and article information

                Journal
                Kidney International
                Kidney International
                Elsevier BV
                00852538
                August 2020
                August 2020
                : 98
                : 2
                : 294-309
                Article
                10.1016/j.kint.2020.04.020
                b942b284-7db8-4494-808c-7f1cf1f47571
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article