20
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The ex-illiterate brain: The critical period, cognitive reserve and HAROLD model

      Dementia & Neuropsychologia
      Associação de Neurologia Cognitiva e do Comportamento
      reserva cognitiva, analfabetismo, brain asymmetry, illiteracy, assimetria cerebral, language, modelo HAROLD., HAROLD model., magnetoencephalography, magnetoencefalografia, cognitive reserve, linguagem

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract The lifelong acquisition of cognitive skills shapes the biology of the brain. However, there are critical periods for the best use of the brain to process the acquired information. Objectives: To discuss the critical period of cognitive acquisition, the concept of cognitive reserve and the HAROLD (Hemispheric Asymmetry Reduction in Older adults) model. Methods: Seven women who learned how to read and to write after the age of 50 (ex-illiterates) and five women with 10 years of regular schooling (controls) were submitted to a language recognition test while brain activity was being recorded using magnetoencephalography. Spoken words were delivered binaurally via two plastic tubs terminating in ear inserts, and recordings were made with a whole head magnetometer consisting of 148 magnetometer coils. Results: Both groups performed similarly on the task of identifying target words. Analysis of the number of sources of activity in the left and right hemispheres revealed significant differences between the two groups, showing that ex-illiterate subjects exhibited less brain functional asymmetry during the language task. Conclusions: These results should be interpreted with caution because the groups were small. However, these findings reinforce the concept that poorly educated subjects tend to use the brain for information processing in a different way to subjects with a high educational level or who were schooled at the regular time. Finally, the recruiting of both hemispheres to tackle the language recognition test occurred to a greater degree in the ex-illiterate group where this can be interpreted as a sign of difficulty performing the task.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Hemispheric asymmetry reduction in older adults: the HAROLD model.

          A model of the effects of aging on brain activity during cognitive performance is introduced. The model is called HAROLD (hemispheric asymmetry reduction in older adults), and it states that, under similar circumstances, prefrontal activity during cognitive performances tends to be less lateralized in older adults than in younger adults. The model is supported by functional neuroimaging and other evidence in the domains of episodic memory, semantic memory, working memory, perception, and inhibitory control. Age-related hemispheric asymmetry reductions may have a compensatory function or they may reflect a dedifferentiation process. They may have a cognitive or neural origin, and they may reflect regional or network mechanisms. The HAROLD model is a cognitive neuroscience model that integrates ideas and findings from psychology and neuroscience of aging.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aging gracefully: compensatory brain activity in high-performing older adults.

            Whereas some older adults show significant cognitive deficits, others perform as well as young adults. We investigated the neural basis of these different aging patterns using positron emission tomography (PET). In PET and functional MRI (fMRI) studies, prefrontal cortex (PFC) activity tends to be less asymmetric in older than in younger adults (Hemispheric Asymmetry Reduction in Old Adults or HAROLD). This change may help counteract age-related neurocognitive decline (compensation hypothesis) or it may reflect an age-related difficulty in recruiting specialized neural mechanisms (dedifferentiation hypothesis). To compare these two hypotheses, we measured PFC activity in younger adults, low-performing older adults, and high-performing older adults during recall and source memory of recently studied words. Compared to recall, source memory was associated with right PFC activations in younger adults. Low-performing older adults recruited similar right PFC regions as young adults, but high-performing older adults engaged PFC regions bilaterally. Thus, consistent with the compensation hypothesis and inconsistent with the dedifferentiation hypothesis, a hemispheric asymmetry reduction was found in high-performing but not in low-performing older adults. The results suggest that low-performing older adults recruited a similar network as young adults but used it inefficiently, whereas high-performing older adults counteracted age-related neural decline through a plastic reorganization of neurocognitive networks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Differences in the functional neuroanatomy of inhibitory control across the adult life span.

              Inhibitory control, the ability to suppress irrelevant or interfering stimuli, is a fundamental cognitive function that deteriorates during aging, but little is understood about the bases of decline. Thus, we used event-related functional magnetic resonance imaging (fMRI) to study inhibitory control in healthy adults aged 18 to 78. Activation during "successful inhibition" occurred predominantly in right prefrontal and parietal regions and was more extensive, bilaterally and prefrontally, in the older groups. Presupplementary motor area was also more active in poorer inhibitory performers. Therefore, older adults activate areas that are comparable to those activated by young adults during inhibition, as well as additional regions. The results are consistent with a compensatory interpretation and extend the aging neuroimaging literature into the cognitive domain of inhibition.
                Bookmark

                Author and article information

                Journal
                S1980-57642009000300222
                10.1590/S1980-57642009DN30300008
                http://creativecommons.org/licenses/by/4.0/

                Nursing,Geriatric medicine,Neurology,Internal medicine,Health & Social care,Clinical Psychology & Psychiatry
                reserva cognitiva,analfabetismo,brain asymmetry,illiteracy,assimetria cerebral,language,modelo HAROLD.,HAROLD model.,magnetoencephalography,magnetoencefalografia,cognitive reserve,linguagem

                Comments

                Comment on this article