43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Scarcity of Specific Nutrients in Wild Bee Larval Food Negatively Influences Certain Life History Traits

      research-article
      * , *
      Biology
      MDPI
      nutritional stress, nutrient cycling, ecological stoichiometry, ecosystem, bee, sodium, potassium, zinc, food, diet

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Pollen comprises many organic substances (sugars, lipids, proteins, amino acids, vitamins, etc.), all of which are built from elements such as carbon, hydrogen, oxygen, nitrogen, phosphorus, sodium, potassium, zinc, and approximately twenty others. These special nutritional elements compose the cells, tissues, and bodies of all the life forms on our planet and are needed by bee larvae for healthy growth. However, not all plants produce pollen containing these elements in proportions needed specifically by bees, meaning that not all pollens are nutritionally balanced for bees. Moreover, the decrease in plant diversity is thought to be among the main causes of the dwindling numbers of pollinators worldwide. Currently, governments and societies are attempting to combat this pollinator decline by providing nutritionally balanced and diverse food plants to pollinators. Knowing which nutritional elements are crucial for the bee diet and understanding why are prerequisites for tailoring conservation efforts for this group of insects, which are substantially important for human nutrition and ecosystem functioning. Basic information obtained from feeding experiments is important for synergistically understanding how plant diversity within certain species that produce pollens with rich or scarce amounts of certain nutritional elements influences bee health and prosperity.

          Abstract

          Bee nutrition studies have focused on food quantity rather than quality, and on details of bee biology rather than on the functioning of bees in ecosystems. Ecological stoichiometry has been proposed for studies on bee nutritional ecology as an ecosystem-oriented approach complementary to traditional approaches. It uses atomic ratios of chemical elements in foods and organisms as metrics to ask ecological questions. However, information is needed on the fitness effects of nutritional mismatches between bee demand and the supply of specific elements in food. We performed the first laboratory feeding experiment on the wild bee Osmia bicornis, investigating the impact of Na, K, and Zn scarcity in larval food on fitness-related life history traits (mortality, cocoon development, and imago body mass). We showed that bee fitness is shaped by chemical element availability in larval food; this effect may be sex-specific, where Na might influence female body mass, while Zn influences male mortality and body mass, and the trade-off between K allocation in cocoons and adults may influence cocoon and body development. These results elucidate the nutritional mechanisms underlying the nutritional ecology, behavioral ecology, and population functioning of bees within the context of nutrient cycling in the food web.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: not found
          • Article: not found

          Metals, Toxicity and Oxidative Stress

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Macronutrient ratios in pollen shape bumble bee (Bombus impatiens) foraging strategies and floral preferences

            Bees pollinate the majority of flowering plant species, including agricultural crops. The pollen they obtain is their main protein and lipid source that fuels development and reproduction. Bee populations are declining globally, in large part because of landscape-level loss of host-plant species contributing to a nutritional shortage. To mitigate declines, we must understand how the nutritional requirements of bees influence foraging behavior. We demonstrate that bumble bees selectively collect pollen from host-plant species based on the protein:lipid ratios of pollen. Our research indicates that bees evaluate pollen quality and adjust foraging decisions to meet their nutritional needs. To be effective, conservation initiatives must include host-plant species that provide pollen that satisfies the nutritional demands of bees to support their populations. To fuel their activities and rear their offspring, foraging bees must obtain a sufficient quality and quantity of nutritional resources from a diverse plant community. Pollen is the primary source of proteins and lipids for bees, and the concentrations of these nutrients in pollen can vary widely among host-plant species. Therefore we hypothesized that foraging decisions of bumble bees are driven by both the protein and lipid content of pollen. By successively reducing environmental and floral cues, we analyzed pollen-foraging preferences of Bombus impatiens in ( i ) host-plant species, ( ii ) pollen isolated from these host-plant species, and ( iii ) nutritionally modified single-source pollen diets encompassing a range of protein and lipid concentrations. In our semifield experiments, B . impatiens foragers exponentially increased their foraging rates of pollen from plant species with high protein:lipid (P:L) ratios; the most preferred plant species had the highest ratio (∼4.6:1). These preferences were confirmed in cage studies where, in pairwise comparisons in the absence of other floral cues, B . impatiens workers still preferred pollen with higher P:L ratios. Finally, when presented with nutritionally modified pollen, workers were most attracted to pollen with P:L ratios of 5:1 and 10:1, but increasing the protein or lipid concentration (while leaving ratios intact) reduced attraction. Thus, macronutritional ratios appear to be a primary factor driving bee pollen-foraging behavior and may explain observed patterns of host-plant visitation across the landscape. The nutritional quality of pollen resources should be taken into consideration when designing conservation habitats supporting bee populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hormonal control of the yolk precursor vitellogenin regulates immune function and longevity in honeybees.

              A striking example of plasticity in life span is seen in social insects such as ants and bees, where different castes may display distinct ageing patterns. In particular, the honeybee offers an intriguing illustration of environmental control on ageing rate. Honeybee workers display a temporal division of labour where young bees (or 'hive bees') perform tasks within the brood nest, and older bees forage for nectar, pollen propolis and water. When bees switch from the hive bee to the forager stage, their cellular defence machinery is down-regulated by a dramatic reduction in the number of functioning haemocytes (immunocytes). This study documents that the yolk precursor vitellogenin is likely to be involved in a regulatory pathway that controls the observed decline in somatic maintenance function of honeybee foragers. An association between the glyco-lipoprotein vitellogenin and immune function has not previously been reported for any organism. Honeybee workers are functionally sterile, and via the expression of juvenile hormone, a key gonotrophic hormone in adult insects, their vitellogenin levels are influenced by social interactions with other bees. Our results therefore suggest that in terms of maintenance of the cellular immune system, senescence of the honeybee worker is under social control.
                Bookmark

                Author and article information

                Journal
                Biology (Basel)
                Biology (Basel)
                biology
                Biology
                MDPI
                2079-7737
                11 December 2020
                December 2020
                : 9
                : 12
                : 462
                Affiliations
                Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
                Author notes
                Author information
                https://orcid.org/0000-0001-5843-5195
                https://orcid.org/0000-0001-7438-4885
                Article
                biology-09-00462
                10.3390/biology9120462
                7764569
                33322450
                d5262334-f227-4178-b3fb-11954c625a7f
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 10 November 2020
                : 09 December 2020
                Categories
                Communication

                nutritional stress,nutrient cycling,ecological stoichiometry,ecosystem,bee,sodium,potassium,zinc,food,diet

                Comments

                Comment on this article