18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Predicting survival time of lung cancer patients using radiomic analysis.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study investigates the prediction of Non-small cell lung cancer (NSCLC) patient survival outcomes based on radiomic texture and shape features automatically extracted from tumor image data.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          The meaning and use of the area under a receiver operating characteristic (ROC) curve.

          A representation and interpretation of the area under a receiver operating characteristic (ROC) curve obtained by the "rating" method, or by mathematical predictions based on patient characteristics, is presented. It is shown that in such a setting the area represents the probability that a randomly chosen diseased subject is (correctly) rated or ranked with greater suspicion than a randomly chosen non-diseased subject. Moreover, this probability of a correct ranking is the same quantity that is estimated by the already well-studied nonparametric Wilcoxon statistic. These two relationships are exploited to (a) provide rapid closed-form expressions for the approximate magnitude of the sampling variability, i.e., standard error that one uses to accompany the area under a smoothed ROC curve, (b) guide in determining the size of the sample required to provide a sufficiently reliable estimate of this area, and (c) determine how large sample sizes should be to ensure that one can statistically detect differences in the accuracy of diagnostic techniques.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Machine Learning methods for Quantitative Radiomic Biomarkers

            Radiomics extracts and mines large number of medical imaging features quantifying tumor phenotypic characteristics. Highly accurate and reliable machine-learning approaches can drive the success of radiomic applications in clinical care. In this radiomic study, fourteen feature selection methods and twelve classification methods were examined in terms of their performance and stability for predicting overall survival. A total of 440 radiomic features were extracted from pre-treatment computed tomography (CT) images of 464 lung cancer patients. To ensure the unbiased evaluation of different machine-learning methods, publicly available implementations along with reported parameter configurations were used. Furthermore, we used two independent radiomic cohorts for training (n = 310 patients) and validation (n = 154 patients). We identified that Wilcoxon test based feature selection method WLCX (stability = 0.84 ± 0.05, AUC = 0.65 ± 0.02) and a classification method random forest RF (RSD = 3.52%, AUC = 0.66 ± 0.03) had highest prognostic performance with high stability against data perturbation. Our variability analysis indicated that the choice of classification method is the most dominant source of performance variation (34.21% of total variance). Identification of optimal machine-learning methods for radiomic applications is a crucial step towards stable and clinically relevant radiomic biomarkers, providing a non-invasive way of quantifying and monitoring tumor-phenotypic characteristics in clinical practice.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features

              Lung cancer is the most prevalent cancer worldwide, and histopathological assessment is indispensable for its diagnosis. However, human evaluation of pathology slides cannot accurately predict patients' prognoses. In this study, we obtain 2,186 haematoxylin and eosin stained histopathology whole-slide images of lung adenocarcinoma and squamous cell carcinoma patients from The Cancer Genome Atlas (TCGA), and 294 additional images from Stanford Tissue Microarray (TMA) Database. We extract 9,879 quantitative image features and use regularized machine-learning methods to select the top features and to distinguish shorter-term survivors from longer-term survivors with stage I adenocarcinoma (P<0.003) or squamous cell carcinoma (P=0.023) in the TCGA data set. We validate the survival prediction framework with the TMA cohort (P<0.036 for both tumour types). Our results suggest that automatically derived image features can predict the prognosis of lung cancer patients and thereby contribute to precision oncology. Our methods are extensible to histopathology images of other organs.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Impact Journals, LLC
                1949-2553
                1949-2553
                Nov 28 2017
                : 8
                : 61
                Affiliations
                [1 ] Division of Radiation Oncology, McGill University, Montréal, Canada.
                [2 ] The Laboratory for Imagery, Vision and Artificial Intelligence, Ecole de Technologie Supérieure, Montréal, Canada.
                Article
                22251
                10.18632/oncotarget.22251
                5732814
                29262648
                53a754b4-6d21-4820-8ae3-8e7fc6ddc96f
                History

                texture features,radiomics,lung cancer,cancer staging,NSCLC
                texture features, radiomics, lung cancer, cancer staging, NSCLC

                Comments

                Comment on this article