19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diversity and Dynamics of Epidermal Microbes During Grape Development of Cabernet Sauvignon ( Vitis vinifera L.) in the Ecological Viticulture Model in Wuhai, China

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Grapevine-related microorganisms affect the health and yield of grapes, the metabolic pathways of the fermentation process, and the regional characteristics of wine. However, the diversity of epidermal microorganisms during the development of berries under the ecological viticulture model has not been described in detail. In this study, high-throughput amplicon sequencing technology was used to perform ITS and 16S sequencing of Cabernet Sauvignon epidermal microbes at different developmental stages in the Wuhai region to investigate the succession of epidermal microbes and their response to developmental stages and vineyard weather. The results showed that the diversity of fungi and bacteria decreased during development. Epidermal microorganisms recruited members according to their developmental stages, but retained the core taxa, such as the fungi genera Alternaria, Jattaea, and Jattaea and the bacteria genera Brevundimonas, Sphingomonas, Acinetobacter, and Pseudomonas. In addition, the microbial diversity was associated with specific meteorological parameters, implying that there was a connection between the environmental conditions of the vineyard and the microbial distribution pattern such as the fungus genus Filobasidium was positively correlated with relative humidity and negatively correlated with average high temperature, average low temperature, and average ground temperature; the bacterium genus Lactobacillus was positively correlated with sunlight time, and negatively correlated with relative humidity. In conclusion, this study can help vineyard managers understand the microbial consortia associated with particular diseases, and also the dynamics of infection processes in order to take preventive actions, especially at the most critical moments.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The SILVA ribosomal RNA gene database project: improved data processing and web-based tools

          SILVA (from Latin silva, forest, http://www.arb-silva.de) is a comprehensive web resource for up to date, quality-controlled databases of aligned ribosomal RNA (rRNA) gene sequences from the Bacteria, Archaea and Eukaryota domains and supplementary online services. The referred database release 111 (July 2012) contains 3 194 778 small subunit and 288 717 large subunit rRNA gene sequences. Since the initial description of the project, substantial new features have been introduced, including advanced quality control procedures, an improved rRNA gene aligner, online tools for probe and primer evaluation and optimized browsing, searching and downloading on the website. Furthermore, the extensively curated SILVA taxonomy and the new non-redundant SILVA datasets provide an ideal reference for high-throughput classification of data from next-generation sequencing approaches.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            UPARSE: highly accurate OTU sequences from microbial amplicon reads.

            Amplified marker-gene sequences can be used to understand microbial community structure, but they suffer from a high level of sequencing and amplification artifacts. The UPARSE pipeline reports operational taxonomic unit (OTU) sequences with ≤1% incorrect bases in artificial microbial community tests, compared with >3% incorrect bases commonly reported by other methods. The improved accuracy results in far fewer OTUs, consistently closer to the expected number of species in a community.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              UCHIME improves sensitivity and speed of chimera detection

              Motivation: Chimeric DNA sequences often form during polymerase chain reaction amplification, especially when sequencing single regions (e.g. 16S rRNA or fungal Internal Transcribed Spacer) to assess diversity or compare populations. Undetected chimeras may be misinterpreted as novel species, causing inflated estimates of diversity and spurious inferences of differences between populations. Detection and removal of chimeras is therefore of critical importance in such experiments. Results: We describe UCHIME, a new program that detects chimeric sequences with two or more segments. UCHIME either uses a database of chimera-free sequences or detects chimeras de novo by exploiting abundance data. UCHIME has better sensitivity than ChimeraSlayer (previously the most sensitive database method), especially with short, noisy sequences. In testing on artificial bacterial communities with known composition, UCHIME de novo sensitivity is shown to be comparable to Perseus. UCHIME is >100× faster than Perseus and >1000× faster than ChimeraSlayer. Contact: robert@drive5.com Availability: Source, binaries and data: http://drive5.com/uchime. Supplementary information: Supplementary data are available at Bioinformatics online.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                30 June 2022
                2022
                : 13
                : 935647
                Affiliations
                [1] 1College of Enology, Northwest A&F University , Xianyang, China
                [2] 2Shaanxi Engineering Research Center for Viti-Viniculture , Xianyang, China
                [3] 3China Wine Industry Technology Institute, Zhongguancun Innovation Center , Yinchuan, China
                Author notes

                Edited by: Yu Ding, Jinan University, China

                Reviewed by: Tingting Liang, Guangdong Institute of Microbiology, Guangdong Academy of Science, China; Maria Dimopoulou, Agricultural University of Athens, Greece

                *Correspondence: Hua Li, lihuawine@ 123456nwafu.edu.cn

                These authors have contributed equally to this work and share first authorship

                These authors have contributed equally to this work and share last authorship

                This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2022.935647
                9280189
                e8b3bc48-e20b-465f-9b12-1a5c248a48a9
                Copyright © 2022 Wei, Chen, Ding, Wang, Gao, Zhang, Liu, Li and Wang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 04 May 2022
                : 24 May 2022
                Page count
                Figures: 6, Tables: 1, Equations: 0, References: 50, Pages: 13, Words: 8372
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                high throughput sequencing,ecological viticulture,grape,microbial diversity,developmental stage,vineyard weather

                Comments

                Comment on this article