39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe.

      ACS Nano

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Atomic layers of two-dimensional (2D) materials have recently been the focus of extensive research. This follows from the footsteps of graphene, which has shown great potential for ultrathin optoelectronic devices. In this paper, we present a comprehensive study on the synthesis, characterization, and thin film photodetector application of atomic layers of InSe. Correlation between resonance Raman spectroscopy and photoconductivity measurements allows us to systematically track the evolution of the electronic band structure of 2D InSe as its thickness approaches few atomic layers. Analysis of photoconductivity spectra suggests that few-layered InSe has an indirect band gap of 1.4 eV, which is 200 meV higher than bulk InSe due to the suppressed interlayer electron orbital coupling. Temperature-dependent photocurrent measurements reveal that the suppressed interlayer interaction also results in more localized pz-like orbitals, and these orbitals couple strongly with the in-plane E' and E″ phonons. Finally, we measured a strong photoresponse of 34.7 mA/W and fast response time of 488 μs for a few layered InSe, suggesting that it is a good material for thin film optoelectronic applications.

          Related collections

          Author and article information

          Journal
          24392873
          10.1021/nn405036u

          Comments

          Comment on this article