0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Layer-dependent nonlinear optical properties of two-dimensional InSe and its applications in waveguide lasers.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The thickness-dependent third-order nonlinear optical properties of two-dimensional β-InSe and its potential applications as a saturable absorber in pulsed laser generation are investigated. InSe sheets with different layers are prepared by the chemical vapor deposition. Using open-aperture femtosecond Z-scan technique at 1030 nm, the modulation depth and nonlinear absorption coefficient are obtained to be 36% and -1.6 × 104 cm·GW-1, respectively. The intrinsic mechanism of the layer-dependent energy band structure evolution is analyzed based on density functional theory, and the theoretical analysis is consistent with the experimental results. Based on a waveguide cavity, a Q-switched mode-locked laser at 1 µm with a repetition frequency of 8.51 GHz and a pulse duration of 28 ps is achieved by utilizing the layered InSe as a saturable absorber. This work provides an in-depth understanding of layer-dependent properties of InSe and extends its applications in laser technology for compact light devices.

          Related collections

          Author and article information

          Journal
          Opt Express
          Optics express
          Optica Publishing Group
          1094-4087
          1094-4087
          Jun 20 2022
          : 30
          : 13
          Article
          477042
          10.1364/OE.462811
          36225069
          8cd61b02-2845-4d6c-a57e-269f3287c376
          History

          Comments

          Comment on this article