29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Scanning tunneling spectroscopy of high-temperature superconductors

      Preprint

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tunneling spectroscopy played a central role in the experimental verification of the microscopic theory of superconductivity in the classical superconductors. Initial attempts to apply the same approach to high-temperature superconductors were hampered by various problems related to the complexity of these materials. The use of scanning tunneling microscopy/spectroscopy (STM/STS) on these compounds allowed to overcome the main difficulties. This success motivated a rapidly growing scientific community to apply this technique to high-temperature superconductors. This paper reviews the experimental highlights obtained over the last decade. We first recall the crucial efforts to gain control over the technique and to obtain reproducible results. We then discuss how the STM/STS technique has contributed to the study of some of the most unusual and remarkable properties of high-temperature superconductors: the unusual large gap values and the absence of scaling with the critical temperature; the pseudogap and its relation to superconductivity; the unprecedented small size of the vortex cores and its influence on vortex matter; the unexpected electronic properties of the vortex cores; the combination of atomic resolution and spectroscopy leading to the observation of periodic local density of states modulations in the superconducting and pseudogap states, and in the vortex cores.

          Related collections

          Most cited references103

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Correlated Electrons in High Temperature Superconductors

          Theoretical ideas and experimental results concerning high temperature superconductors are reviewed. Special emphasis is given to calculations carried out with the help of computers applied to models of strongly correlated electrons proposed to describe the two dimensional \({\rm Cu O_2}\) planes. The review also includes results using several analytical techniques. The one and three band Hubbard models, and the \({\rm t-J}\) model are discussed, and their behavior compared against experiments when available. Among the conclusions of the review, we found that some experimentally observed unusual properties of the cuprates have a natural explanation through Hubbard-like models. In particular abnormal features like the mid-infrared band of the optical conductivity \(\sigma(\omega)\), the new states observed in the gap in photoemission experiments, the behavior of the spin correlations with doping, and the presence of phase separation in the copper oxide superconductors may be explained, at least in part, by these models. Finally, the existence of superconductivity in Hubbard-like models is analyzed. Some aspects of the recently proposed ideas to describe the cuprates as having a \(\dx2y2\) superconducting condensate at low temperatures are discussed. Numerical results favor this scenario over others....(continues).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Angle-resolved photoemission spectroscopy of the cuprate superconductors

            This paper reviews the most recent ARPES results on the cuprate superconductors and their insulating parent and sister compounds, with the purpose of providing an updated summary of the extensive literature in this field. The low energy excitations are discussed with emphasis on some of the most relevant issues, such as the Fermi surface and remnant Fermi surface, the superconducting gap, the pseudogap and d-wave-like dispersion, evidence of electronic inhomogeneity and nano-scale phase separation, the emergence of coherent quasiparticles through the superconducting transition, and many-body effects in the one-particle spectral function due to the interaction of the charge with magnetic and/or lattice degrees of freedom. The first part of the paper introduces photoemission spectroscopy in the context of strongly interacting systems, along with an update on the state-of-the-art instrumentation. The second part provides a brief overview of the scientific issues relevant to the investigation of the low energy electronic structure by ARPES. The rest of the paper is devoted to the review of experimental results from the cuprates and the discussion is organized along conceptual lines: normal-state electronic structure, interlayer interaction, superconducting gap, coherent superconducting peak, pseudogap, electron self energy and collective modes. Within each topic, ARPES data from the various copper oxides are presented.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Tunnelling from a Many-Particle Point of View

              J. Bardeen (1961)
                Bookmark

                Author and article information

                Journal
                10.1103/RevModPhys.79.353
                cond-mat/0610672

                Condensed matter
                Condensed matter

                Comments

                Comment on this article