19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Discovery of orbital-selective Cooper pairing in FeSe

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          High-temperature superconductivity in iron-based materials

          The surprising discovery of superconductivity in layered iron-based materials, with transition temperatures climbing as high as 55 K, has lead to thousands of publications on this subject over the past two years. While there is general consensus on the unconventional nature of the Cooper pairing state of these systems, several central questions remain - including the role of magnetism, the nature of chemical and structural tuning, and the resultant pairing symmetry - and the search for universal properties and principles continues. Here we review the progress of research on iron-based superconducting materials, highlighting the major experimental benchmarks that have been so far reached and the important questions that remain to be conclusively answered.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Direct observation of nodes and twofold symmetry in FeSe superconductor.

            We investigated the electron-pairing mechanism in an iron-based superconductor, iron selenide (FeSe), using scanning tunneling microscopy and spectroscopy. Tunneling conductance spectra of stoichiometric FeSe crystalline films in their superconducting state revealed evidence for a gap function with nodal lines. Electron pairing with twofold symmetry was demonstrated by direct imaging of quasiparticle excitations in the vicinity of magnetic vortex cores, Fe adatoms, and Se vacancies. The twofold pairing symmetry was further supported by the observation of striped electronic nanostructures in the slightly Se-doped samples. The anisotropy can be explained in terms of the orbital-dependent reconstruction of electronic structure in FeSe.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states

              In the high-transition-temperature (high-Tc) superconductors the pseudogap phase becomes predominant when the density of doped holes is reduced1. Within this phase it has been unclear which electronic symmetries (if any) are broken, what the identity of any associated order parameter might be, and which microscopic electronic degrees of freedom are active. Here we report the determination of a quantitative order parameter representing intra-unit-cell nematicity: the breaking of rotational symmetry by the electronic structure within CuO2 unit cell. We analyze spectroscopic-imaging scanning tunneling microscope images of the intra-unit-cell states in underdoped Bi2Sr2CaCu2O8+{\delta} and, using two independent evaluation techniques, find evidence for electronic nematicity of the states close to the pseudogap energy. Moreover, we demonstrate directly that these phenomena arise from electronic differences at the two oxygen sites within each unit cell. If the characteristics of the pseudogap seen here and by other techniques all have the same microscopic origin, this phase involves weak magnetic states at the O sites that break 90o -rotational symmetry within every CuO2 unit cell.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                July 06 2017
                July 07 2017
                : 357
                : 6346
                : 75-80
                Article
                10.1126/science.aal1575
                28684522
                232e362d-eeac-4d09-8dc9-814a279ec34f
                © 2017

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article