39
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Continuation versus discontinuation of renin–angiotensin system inhibitors in patients admitted to hospital with COVID-19: a prospective, randomised, open-label trial

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
      The Lancet Respiratory Medicine
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background Biological considerations suggest that renin–angiotensin system inhibitors might influence the severity of COVID-19. We aimed to evaluate whether continuing versus discontinuing renin–angiotensin system inhibitors (angiotensin-converting enzyme inhibitors or angiotensin receptor blockers) affects outcomes in patients admitted to hospital with COVID-19. Methods The REPLACE COVID trial was a prospective, randomised, open-label trial done at 20 large referral hospitals in seven countries worldwide. Eligible participants were aged 18 years and older who were admitted to hospital with COVID-19 and were receiving a renin–angiotensin system inhibitor before admission. Individuals with contraindications to continuation or discontinuation of renin–angiotensin system inhibitor therapy were excluded. Participants were randomly assigned (1:1) to continuation or discontinuation of their renin–angiotensin system inhibitor using permuted block randomisation, with allocation concealed using a secure web-based randomisation system. The primary outcome was a global rank score in which participants were ranked across four hierarchical tiers incorporating time to death, duration of mechanical ventilation, time on renal replacement or vasopressor therapy, and multiorgan dysfunction during the hospitalisation. Primary analyses were done in the intention-to-treat population. The REPLACE COVID trial is registered with ClinicalTrials.gov, NCT04338009. Findings Between March 31 and Aug 20, 2020, 152 participants were enrolled and randomly assigned to either continue or discontinue renin–angiotensin system inhibitor therapy (continuation group n=75; discontinuation group n=77). Mean age of participants was 62 years (SD 12), 68 (45%) were female, mean body-mass index was 33 kg/m2 (SD 8), and 79 (52%) had diabetes. Compared with discontinuation of renin–angiotensin system inhibitors, continuation had no effect on the global rank score (median rank 73 [IQR 40–110] for continuation vs 81 [38–117] for discontinuation; β-coefficient 8 [95% CI −13 to 29]). There were 16 (21%) of 75 participants in the continuation arm versus 14 (18%) of 77 in the discontinuation arm who required intensive care unit admission or invasive mechanical ventilation, and 11 (15%) of 75 participants in the continuation group versus ten (13%) of 77 in the discontinuation group died. 29 (39%) participants in the continuation group and 28 (36%) participants in the discontinuation group had at least one adverse event (χ2 test of adverse events between treatment groups p=0·77). There was no difference in blood pressure, serum potassium, or creatinine during follow-up across the two groups. Interpretation Consistent with international society recommendations, renin–angiotensin system inhibitors can be safely continued in patients admitted to hospital with COVID-19. Funding REPLACE COVID Investigators, REPLACE COVID Trial Social Fundraising Campaign, and FastGrants.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study

          Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p<0·0001), and d-dimer greater than 1 μg/mL (18·42, 2·64–128·55; p=0·0033) on admission. Median duration of viral shedding was 20·0 days (IQR 17·0–24·0) in survivors, but SARS-CoV-2 was detectable until death in non-survivors. The longest observed duration of viral shedding in survivors was 37 days. Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor

            Summary The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention

                Bookmark

                Author and article information

                Journal
                The Lancet Respiratory Medicine
                The Lancet Respiratory Medicine
                Elsevier BV
                22132600
                January 2021
                January 2021
                Article
                10.1016/S2213-2600(20)30558-0
                f1d075e4-1b1f-4c9e-8080-46f5b32fc7ea
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article