30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Receptor sensitivity in bacterial chemotaxis

      ,
      Proceedings of the National Academy of Sciences
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chemoreceptors in Escherichia coli are coupled to the flagella by a labile phosphorylated intermediate, CheY approximately P. Its activity can be inferred from the rotational bias of flagellar motors, but motor response is stochastic and limited to a narrow physiological range. Here we use fluorescence resonance energy transfer to monitor interactions of CheY approximately P with its phosphatase, CheZ, that reveal changes in the activity of the receptor kinase, CheA, resulting from the addition of attractants or repellents. Analyses of cheR and/or cheB mutants, defective in receptor methylation/demethylation, show that response sensitivity depends on the activity of CheB and the level of receptor modification. In cheRcheB mutants, the concentration of attractant that generates a half-maximal response is equal to the dissociation constant of the receptor. In wild-type cells, it is 35 times smaller. This amplification, together with the ultrasensitivity of the flagellar motor, explains previous observations of high chemotactic gain.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: not found
          • Article: not found

          Chemotaxis in Escherichia coli analysed by Three-dimensional Tracking

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells.

            Understanding biology at the single-cell level requires simultaneous measurements of biochemical parameters and behavioral characteristics in individual cells. Here, the output of individual flagellar motors in Escherichia coli was measured as a function of the intracellular concentration of the chemotactic signaling protein. The concentration of this molecule, fused to green fluorescent protein, was monitored with fluorescence correlation spectroscopy. Motors from different bacteria exhibited an identical steep input-output relation, suggesting that they actively contribute to signal amplification in chemotaxis. This experimental approach can be extended to quantitative in vivo studies of other biochemical networks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Temporal comparisons in bacterial chemotaxis.

              Responses of tethered cells of Escherichia coli to impulse, step, exponential-ramp or exponentiated sine-wave stimuli are internally consistent, provided that allowance is made for the nonlinear effect of thresholds. This result confirms that wild-type cells exposed to stimuli in the physiological range make short-term temporal comparisons extending 4 sec into the past: the past second is given a positive weighting, the previous 3 sec are given a negative weighting, and the cells respond to the difference. cheRcheB mutants (defective in methylation and demethylation) weight the past second in a manner similar to the wild type, but they do not make short-term temporal comparisons. When exposed to small steps delivered iontophoretically, they fail to adapt over periods of up to 12 sec; when exposed to longer steps in a flow cell, they partially adapt, but with a decay time of greater than 30 sec. cheZ mutants use a weighting that extends at least 40 sec into the past. The gain of the chemotactic system is large: the change in occupancy of one receptor molecule produces a significant response.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                January 08 2002
                December 11 2001
                January 08 2002
                : 99
                : 1
                : 123-127
                Article
                10.1073/pnas.011589998
                e5480bb3-115c-4c90-9961-c7da1954f0cd
                © 2002
                History

                Comments

                Comment on this article