5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer

      ,
      Proceedings of the National Academy of Sciences
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In Escherichia coli chemotaxis, signaling depends on modulation of the level of phosphorylation of CheY, a small protein that couples receptors and flagellar motors. Working in vivo, we used fluorescence resonance energy transfer (FRET) to measure the interaction of CheY approximately P with its target, FliM. Binding of CheY approximately P to FliM was found to be much less cooperative than motor switching; however, under the conditions of our experiment, most of the FliM appeared to be in the cytoplasm. We studied signal processing times in the chemotaxis pathway by measuring the changes in CheY approximately P binding to FliM on flash release of caged chemoeffectors. Following sudden addition of attractant, the amount of CheY approximately P bound to FliM decayed exponentially with a rate constant of about 2 s(-1). Following sudden addition of repellent, FliM occupancy increased with a rate constant of about 20 s(-1). Using these data, we were able to construct a simple model for the chemotactic pathway and to estimate values of rate constants for several key reactions.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          The green fluorescent protein.

          R Tsien (1998)
          In just three years, the green fluorescent protein (GFP) from the jellyfish Aequorea victoria has vaulted from obscurity to become one of the most widely studied and exploited proteins in biochemistry and cell biology. Its amazing ability to generate a highly visible, efficiently emitting internal fluorophore is both intrinsically fascinating and tremendously valuable. High-resolution crystal structures of GFP offer unprecedented opportunities to understand and manipulate the relation between protein structure and spectroscopic function. GFP has become well established as a marker of gene expression and protein targeting in intact cells and organisms. Mutagenesis and engineering of GFP into chimeric proteins are opening new vistas in physiological indicators, biosensors, and photochemical memories.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            On the nature of allosteric transitions: A plausible model

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells.

              Many proteins associated with the plasma membrane are known to partition into submicroscopic sphingolipid- and cholesterol-rich domains called lipid rafts, but the determinants dictating this segregation of proteins in the membrane are poorly understood. We suppressed the tendency of Aequorea fluorescent proteins to dimerize and targeted these variants to the plasma membrane using several different types of lipid anchors. Fluorescence resonance energy transfer measurements in living cells revealed that acyl but not prenyl modifications promote clustering in lipid rafts. Thus the nature of the lipid anchor on a protein is sufficient to determine submicroscopic localization within the plasma membrane.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                October 01 2002
                September 13 2002
                October 01 2002
                : 99
                : 20
                : 12669-12674
                Article
                10.1073/pnas.192463199
                130518
                12232047
                ea8abfa2-7231-49e7-9a7e-d5a3a7f59fbd
                © 2002
                History

                Comments

                Comment on this article