1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Age and sex differences in the effects of short- and long-term exposure to air pollution on endothelial dysfunction

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The effects of air pollution on endothelial function remain unclear across populations. We aimed to use brachial artery flow-mediated dilatation (FMD) to identify demographic differences in the effects of air pollution exposure on endothelial dysfunction.

          Methods

          We measured FMD in 850 participants from October 2016 to January 2020. Location-specific concentrations of fine particulate matter  < 2.5 μm aerodynamic diameter (PM 2.5), inhalable particulate matter  < 10 μm aerodynamic diameter (PM 10), sulfur dioxide (SO 2), nitrogen dioxide (NO 2), carbon monoxide (CO), and ozone (O 3) measured by fixed ambient air monitoring stations were collected for short- and long-term exposure assessment. Multiple linear regression models and restricted cubic splines were used to assess the associations before and after stratification by age and sex.

          Results

          This study eventually included 828 participants [551 (66.5%) younger than 65 years and 553 (66.8%) men]. Each 10 µg/m 3 increase in 7-day exposure to PM 2.5 and PM 10 was significantly linearly associated with a 0.07% ( β = -0.07, 95% CI: -0.13 to -0.004) and 0.05% ( β = -0.05, 95% CI: -0.10 to -0.004) decrease in FMD in the fully adjusted model. After full adjustment, long-term exposure to all air pollutants was significantly associated with impaired FMD. Each 10 µg/m 3 increase in long-term exposure to PM 2.5 and PM 10 was significantly associated with a -0.18% (95% CI: -0.34 to -0.03) and − 0.23% (95% CI: -0.40 to -0.06) change in FMD, respectively. After stratification, the associations of lower FMD with long-term exposure to PM 2.5, PM 10, SO 2, NO 2, and CO significantly persisted in men and participants younger than 65 years instead of women or older participants. For short-term exposure, we observed differences consistent with long-term exposure and a stronger effect of 7-day exposure to SO 2 in men due to a significant interaction effect.

          Conclusion

          Short- and long-term exposure to different air pollutants are strongly associated with decreased endothelial function, and susceptibility to air pollution varies significantly with age and sex.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12940-024-01100-3.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

          Summary Background Rigorous analysis of levels and trends in exposure to leading risk factors and quantification of their effect on human health are important to identify where public health is making progress and in which cases current efforts are inadequate. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a standardised and comprehensive assessment of the magnitude of risk factor exposure, relative risk, and attributable burden of disease. Methods GBD 2019 estimated attributable mortality, years of life lost (YLLs), years of life lived with disability (YLDs), and disability-adjusted life-years (DALYs) for 87 risk factors and combinations of risk factors, at the global level, regionally, and for 204 countries and territories. GBD uses a hierarchical list of risk factors so that specific risk factors (eg, sodium intake), and related aggregates (eg, diet quality), are both evaluated. This method has six analytical steps. (1) We included 560 risk–outcome pairs that met criteria for convincing or probable evidence on the basis of research studies. 12 risk–outcome pairs included in GBD 2017 no longer met inclusion criteria and 47 risk–outcome pairs for risks already included in GBD 2017 were added based on new evidence. (2) Relative risks were estimated as a function of exposure based on published systematic reviews, 81 systematic reviews done for GBD 2019, and meta-regression. (3) Levels of exposure in each age-sex-location-year included in the study were estimated based on all available data sources using spatiotemporal Gaussian process regression, DisMod-MR 2.1, a Bayesian meta-regression method, or alternative methods. (4) We determined, from published trials or cohort studies, the level of exposure associated with minimum risk, called the theoretical minimum risk exposure level. (5) Attributable deaths, YLLs, YLDs, and DALYs were computed by multiplying population attributable fractions (PAFs) by the relevant outcome quantity for each age-sex-location-year. (6) PAFs and attributable burden for combinations of risk factors were estimated taking into account mediation of different risk factors through other risk factors. Across all six analytical steps, 30 652 distinct data sources were used in the analysis. Uncertainty in each step of the analysis was propagated into the final estimates of attributable burden. Exposure levels for dichotomous, polytomous, and continuous risk factors were summarised with use of the summary exposure value to facilitate comparisons over time, across location, and across risks. Because the entire time series from 1990 to 2019 has been re-estimated with use of consistent data and methods, these results supersede previously published GBD estimates of attributable burden. Findings The largest declines in risk exposure from 2010 to 2019 were among a set of risks that are strongly linked to social and economic development, including household air pollution; unsafe water, sanitation, and handwashing; and child growth failure. Global declines also occurred for tobacco smoking and lead exposure. The largest increases in risk exposure were for ambient particulate matter pollution, drug use, high fasting plasma glucose, and high body-mass index. In 2019, the leading Level 2 risk factor globally for attributable deaths was high systolic blood pressure, which accounted for 10·8 million (95% uncertainty interval [UI] 9·51–12·1) deaths (19·2% [16·9–21·3] of all deaths in 2019), followed by tobacco (smoked, second-hand, and chewing), which accounted for 8·71 million (8·12–9·31) deaths (15·4% [14·6–16·2] of all deaths in 2019). The leading Level 2 risk factor for attributable DALYs globally in 2019 was child and maternal malnutrition, which largely affects health in the youngest age groups and accounted for 295 million (253–350) DALYs (11·6% [10·3–13·1] of all global DALYs that year). The risk factor burden varied considerably in 2019 between age groups and locations. Among children aged 0–9 years, the three leading detailed risk factors for attributable DALYs were all related to malnutrition. Iron deficiency was the leading risk factor for those aged 10–24 years, alcohol use for those aged 25–49 years, and high systolic blood pressure for those aged 50–74 years and 75 years and older. Interpretation Overall, the record for reducing exposure to harmful risks over the past three decades is poor. Success with reducing smoking and lead exposure through regulatory policy might point the way for a stronger role for public policy on other risks in addition to continued efforts to provide information on risk factor harm to the general public. Funding Bill & Melinda Gates Foundation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017

            Summary Background Public health is a priority for the Chinese Government. Evidence-based decision making for health at the province level in China, which is home to a fifth of the global population, is of paramount importance. This analysis uses data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 to help inform decision making and monitor progress on health at the province level. Methods We used the methods in GBD 2017 to analyse health patterns in the 34 province-level administrative units in China from 1990 to 2017. We estimated all-cause and cause-specific mortality, years of life lost (YLLs), years lived with disability (YLDs), disability-adjusted life-years (DALYs), summary exposure values (SEVs), and attributable risk. We compared the observed results with expected values estimated based on the Socio-demographic Index (SDI). Findings Stroke and ischaemic heart disease were the leading causes of death and DALYs at the national level in China in 2017. Age-standardised DALYs per 100 000 population decreased by 33·1% (95% uncertainty interval [UI] 29·8 to 37·4) for stroke and increased by 4·6% (–3·3 to 10·7) for ischaemic heart disease from 1990 to 2017. Age-standardised stroke, ischaemic heart disease, lung cancer, chronic obstructive pulmonary disease, and liver cancer were the five leading causes of YLLs in 2017. Musculoskeletal disorders, mental health disorders, and sense organ diseases were the three leading causes of YLDs in 2017, and high systolic blood pressure, smoking, high-sodium diet, and ambient particulate matter pollution were among the leading four risk factors contributing to deaths and DALYs. All provinces had higher than expected DALYs per 100 000 population for liver cancer, with the observed to expected ratio ranging from 2·04 to 6·88. The all-cause age-standardised DALYs per 100 000 population were lower than expected in all provinces in 2017, and among the top 20 level 3 causes were lower than expected for ischaemic heart disease, Alzheimer's disease, headache disorder, and low back pain. The largest percentage change at the national level in age-standardised SEVs among the top ten leading risk factors was in high body-mass index (185%, 95% UI 113·1 to 247·7]), followed by ambient particulate matter pollution (88·5%, 66·4 to 116·4). Interpretation China has made substantial progress in reducing the burden of many diseases and disabilities. Strategies targeting chronic diseases, particularly in the elderly, should be prioritised in the expanding Chinese health-care system. Funding China National Key Research and Development Program and Bill & Melinda Gates Foundation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Obesity and inflammation: the linking mechanism and the complications

              Obesity is the accumulation of abnormal or excessive fat that may interfere with the maintenance of an optimal state of health. The excess of macronutrients in the adipose tissues stimulates them to release inflammatory mediators such as tumor necrosis factor α and interleukin 6, and reduces production of adiponectin, predisposing to a pro-inflammatory state and oxidative stress. The increased level of interleukin 6 stimulates the liver to synthesize and secrete C-reactive protein. As a risk factor, inflammation is an imbedded mechanism of developed cardiovascular diseases including coagulation, atherosclerosis, metabolic syndrome, insulin resistance, and diabetes mellitus. It is also associated with development of non-cardiovascular diseases such as psoriasis, depression, cancer, and renal diseases. On the other hand, a reduced level of adiponectin, a significant predictor of cardiovascular mortality, is associated with impaired fasting glucose, leading to type-2 diabetes development, metabolic abnormalities, coronary artery calcification, and stroke. Finally, managing obesity can help reduce the risks of cardiovascular diseases and poor outcome via inhibiting inflammatory mechanisms.
                Bookmark

                Author and article information

                Contributors
                cissy9007@163.com
                shpxbb@sina.com
                Journal
                Environ Health
                Environ Health
                Environmental Health
                BioMed Central (London )
                1476-069X
                8 July 2024
                8 July 2024
                2024
                : 23
                : 63
                Affiliations
                [1 ]GRID grid.413259.8, ISNI 0000 0004 0632 3337, Department of Geriatrics, National Clinical Research Center for Geriatric Diseases, , Xuanwu Hospital, Capital Medical University, ; Beijing, 100053 China
                [2 ]Department of Cardiology, Chuiyangliu Hospital Affiliated to Tsinghua University, ( https://ror.org/03cve4549) Beijing, 100021 China
                [3 ]Medical Research & Biometrics Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, ( https://ror.org/02drdmm93) Beijing, 100037 China
                [4 ]Health Management Center, Xuanwu Hospital, Capital Medical University, ( https://ror.org/013xs5b60) Beijing, 100053 China
                Article
                1100
                10.1186/s12940-024-01100-3
                11229304
                38978038
                a0bb2c52-91ea-4465-bbca-b81f74ccefd2
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 9 December 2023
                : 24 June 2024
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 82170347
                Funded by: Beijing Municipal Public Welfare Development and Reform Pilot Project for Medical Research Institutes
                Award ID: JYY2023-13
                Categories
                Research
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2024

                Public health
                air pollution,endothelial dysfunction,flow-mediated dilatation
                Public health
                air pollution, endothelial dysfunction, flow-mediated dilatation

                Comments

                Comment on this article