19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Redox and Ionic Homeostasis Regulations against Oxidative, Salinity and Drought Stress in Wheat (A Systems Biology Approach)

      review-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Systems biology and omics has provided a comprehensive understanding about the dynamics of the genome, metabolome, transcriptome, and proteome under stress. In wheat, abiotic stresses trigger specific networks of pathways involved in redox and ionic homeostasis as well as osmotic balance. These networks are considerably more complicated than those in model plants, and therefore, counter models are proposed by unifying the approaches of omics and stress systems biology. Furthermore, crosstalk among these pathways is monitored by the regulation and streaming of transcripts and genes. In this review, we discuss systems biology and omics as a promising tool to study responses to oxidative, salinity, and drought stress in wheat.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance.

          Abiotic stresses, such as drought, salinity, extreme temperatures, chemical toxicity and oxidative stress are serious threats to agriculture and the natural status of the environment. Increased salinization of arable land is expected to have devastating global effects, resulting in 30% land loss within the next 25 years, and up to 50% by the year 2050. Therefore, breeding for drought and salinity stress tolerance in crop plants (for food supply) and in forest trees (a central component of the global ecosystem) should be given high research priority in plant biotechnology programs. Molecular control mechanisms for abiotic stress tolerance are based on the activation and regulation of specific stress-related genes. These genes are involved in the whole sequence of stress responses, such as signaling, transcriptional control, protection of membranes and proteins, and free-radical and toxic-compound scavenging. Recently, research into the molecular mechanisms of stress responses has started to bear fruit and, in parallel, genetic modification of stress tolerance has also shown promising results that may ultimately apply to agriculturally and ecologically important plants. The present review summarizes the recent advances in elucidating stress-response mechanisms and their biotechnological applications. Emphasis is placed on transgenic plants that have been engineered based on different stress-response mechanisms. The review examines the following aspects: regulatory controls, metabolite engineering, ion transport, antioxidants and detoxification, late embryogenesis abundant (LEA) and heat-shock proteins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome plasticity a key factor in the success of polyploid wheat under domestication.

            Wheat was domesticated about 10,000 years ago and has since spread worldwide to become one of the major crops. Its adaptability to diverse environments and end uses is surprising given the diversity bottlenecks expected from recent domestication and polyploid speciation events. Wheat compensates for these bottlenecks by capturing part of the genetic diversity of its progenitors and by generating new diversity at a relatively fast pace. Frequent gene deletions and disruptions generated by a fast replacement rate of repetitive sequences are buffered by the polyploid nature of wheat, resulting in subtle dosage effects on which selection can operate.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              ROS Regulation During Abiotic Stress Responses in Crop Plants

              Abiotic stresses such as drought, cold, salt and heat cause reduction of plant growth and loss of crop yield worldwide. Reactive oxygen species (ROS) including hydrogen peroxide (H2O2), superoxide anions (O2 •-), hydroxyl radical (OH•) and singlet oxygen (1O2) are by-products of physiological metabolisms, and are precisely controlled by enzymatic and non-enzymatic antioxidant defense systems. ROS are significantly accumulated under abiotic stress conditions, which cause oxidative damage and eventually resulting in cell death. Recently, ROS have been also recognized as key players in the complex signaling network of plants stress responses. The involvement of ROS in signal transduction implies that there must be coordinated function of regulation networks to maintain ROS at non-toxic levels in a delicate balancing act between ROS production, involving ROS generating enzymes and the unavoidable production of ROS during basic cellular metabolism, and ROS-scavenging pathways. Increasing evidence showed that ROS play crucial roles in abiotic stress responses of crop plants for the activation of stress-response and defense pathways. More importantly, manipulating ROS levels provides an opportunity to enhance stress tolerances of crop plants under a variety of unfavorable environmental conditions. This review presents an overview of current knowledge about homeostasis regulation of ROS in crop plants. In particular, we summarize the essential proteins that are involved in abiotic stress tolerance of crop plants through ROS regulation. Finally, the challenges toward the improvement of abiotic stress tolerance through ROS regulation in crops are discussed.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                17 October 2017
                2017
                : 8
                : 141
                Affiliations
                [1] 1Department of Arid Land Agriculture, King Abdulaziz University , Jeddah, Saudi Arabia
                [2] 2Department of Electronics and Biomedical Engineering, Chonnam National University , Yeosu, South Korea
                [3] 3Department of Plant Breeding and Genetics, Bahauddin Zakariya University , Multan, Pakistan
                [4] 4Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad , Faisalabad, Pakistan
                [5] 5Department of Plant Breeding and Genetics, University of Agriculture Faisalabad , Faisalabad, Pakistan
                Author notes

                Edited by: Xiaogang Wu, Institute for Systems Biology, United States

                Reviewed by: Anatoly Sorokin, Institute of Cell Biophysics (RAS), Russia; Nicola Bernabò, Università di Teramo, Italy

                *Correspondence: Gyuhwa Chung, chung@ 123456chonnam.ac.kr Seung H. Yang, ymichigan@ 123456jnu.ac.kr Zahid Hussain Shah, shahzahid578@ 123456hotmail.com

                This article was submitted to Systems Biology, a section of the journal Frontiers in Genetics

                Article
                10.3389/fgene.2017.00141
                5651134
                9178c7ef-1168-421f-8da3-2b9098460813
                Copyright © 2017 Shah, Rehman, Akhtar, Daur, Nawaz, Ahmad, Rana, Atif, Yang and Chung.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 07 July 2017
                : 21 September 2017
                Page count
                Figures: 2, Tables: 2, Equations: 0, References: 68, Pages: 10, Words: 0
                Categories
                Genetics
                Review

                Genetics
                wheat,salinity,drought,oxidative,redox
                Genetics
                wheat, salinity, drought, oxidative, redox

                Comments

                Comment on this article