5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Molecular phylogeny and ultrastructure of Selenidium serpulae (Apicomplexa, Archigregarinia) from the calcareous tubeworm Serpula vermicularis (Annelida, Polychaeta, Sabellida)

      Zoologica Scripta
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: not found
          • Article: not found

          Quartet Puzzling: A Quartet Maximum-Likelihood Method for Reconstructing Tree Topologies

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Novel kingdom-level eukaryotic diversity in anoxic environments.

            Molecular evolutionary studies of eukaryotes have relied on a sparse collection of gene sequences that do not represent the full range of eukaryotic diversity in nature. Anaerobic microbes, particularly, have had little representation in phylogenetic studies. Such organisms are the least known of eukaryotes and probably are the most phylogenetically diverse. To provide fresh perspective on the natural diversity of eukaryotes in anoxic environments and also to discover novel sequences for evolutionary studies, we conducted a cultivation-independent, molecular phylogenetic survey of three anoxic sediments, including both freshwater and marine samples. Many previously unrecognized eukaryotes were identified, including representatives of seven lineages that are not specifically related to any known organisms at the kingdom-level and branch below the eukaryotic "crown" radiation of animals, plants, fungi, stramenopiles, etc. The survey additionally identified new sequences characteristic of known ecologically important eukaryotic groups with anaerobic members. Phylogenetic analyses with the new sequences enhance our understanding of the diversity and pattern of eukaryotic evolution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Only six kingdoms of life.

              There are many more phyla of microbes than of macro-organisms, but microbial biodiversity is poorly understood because most microbes are uncultured. Phylogenetic analysis of rDNA sequences cloned after PCR amplification of DNA extracted directly from environmental samples is a powerful way of exploring our degree of ignorance of major groups. As there are only five eukaryotic kingdoms, two claims using such methods for numerous novel 'kingdom-level' lineages among anaerobic eukaryotes would be remarkable, if true. By reanalysing those data with 167 known species (not merely 8-37), I identified relatives for all 8-10 'mysterious' lineages. All probably belong to one of five already recognized phyla (Amoebozoa, Cercozoa, Apusozoa, Myzozoa, Loukozoa) within the basal kingdom Protozoa, mostly in known classes, sometimes even in known orders, families or genera. This strengthens the idea that the ancestral eukaryote was a mitochondrial aerobe. Analogous claims of novel bacterial divisions or kingdoms may reflect the weak resolution and grossly non-clock-like evolution of ribosomal rRNA, not genuine phylum-level biological disparity. Critical interpretation of environmental DNA sequences suggests that our overall picture of microbial biodiversity at phylum or division level is already rather good and comprehensive and that there are no uncharacterized kingdoms of life. However, immense lower-level diversity remains to be mapped, as does the root of the tree of life.
                Bookmark

                Author and article information

                Journal
                Zoologica Scripta
                Zool Scripta
                Wiley-Blackwell
                0300-3256
                1463-6409
                March 2007
                March 2007
                : 36
                : 2
                : 213-227
                Article
                10.1111/j.1463-6409.2007.00272.x
                8e6f06cf-8cd5-4cfa-86df-3a219be5e352
                © 2007

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article