24
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Neuroplasticity and aphasia treatments: new approaches for an old problem

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Given the profound impact of language impairment after stroke (aphasia), neuroplasticity research is garnering considerable attention as means for eventually improving aphasia treatments and how they are delivered. Functional and structural neuroimaging studies indicate that aphasia treatments can recruit both residual and new neural mechanisms to improve language function and that neuroimaging modalities may hold promise in predicting treatment outcome. In relatively small clinical trials, both non-invasive brain stimulation and behavioural manipulations targeting activation or suppression of specific cortices can improve aphasia treatment outcomes. Recent language interventions that employ principles consistent with inducing neuroplasticity also are showing improved performance for both trained and novel items and contexts. While knowledge is rapidly accumulating, larger trials emphasising how to select optimal paradigms for individualised aphasia treatment are needed. Finally, a model of how to incorporate the growing knowledge into clinical practice could help to focus future research.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Re-emergence of modular brain networks in stroke recovery.

          Studies of stroke have identified local reorganization in perilesional tissue. However, because the brain is highly networked, strokes also broadly alter the brain's global network organization. Here, we assess brain network structure longitudinally in adult stroke patients using resting state fMRI. The topology and boundaries of cortical regions remain grossly unchanged across recovery. In contrast, the modularity of brain systems i.e. the degree of integration within and segregation between networks, was significantly reduced sub-acutely (n = 107), but partially recovered by 3 months (n = 85), and 1 year (n = 67). Importantly, network recovery correlated with recovery from language, spatial memory, and attention deficits, but not motor or visual deficits. Finally, in-depth single subject analyses were conducted using tools for visualization of changes in brain networks over time. This exploration indicated that changes in modularity during successful recovery reflect specific alterations in the relationships between different networks. For example, in a patient with left temporo-parietal stroke and severe aphasia, sub-acute loss of modularity reflected loss of association between frontal and temporo-parietal regions bi-hemispherically across multiple modules. These long-distance connections then returned over time, paralleling aphasia recovery. This work establishes the potential importance of normalization of large-scale modular brain systems in stroke recovery.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Intensive speech and language therapy in patients with chronic aphasia after stroke: a randomised, open-label, blinded-endpoint, controlled trial in a health-care setting.

            Treatment guidelines for aphasia recommend intensive speech and language therapy for chronic (≥6 months) aphasia after stroke, but large-scale, class 1 randomised controlled trials on treatment effectiveness are scarce. We aimed to examine whether 3 weeks of intensive speech and language therapy under routine clinical conditions improved verbal communication in daily-life situations in people with chronic aphasia after stroke.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Cognitive control and its impact on recovery from aphasic stroke

              Aphasic deficits are usually only interpreted in terms of domain-specific language processes. However, effective human communication and tests that probe this complex cognitive skill are also dependent on domain-general processes. In the clinical context, it is a pragmatic observation that impaired attention and executive functions interfere with the rehabilitation of aphasia. One system that is important in cognitive control is the salience network, which includes dorsal anterior cingulate cortex and adjacent cortex in the superior frontal gyrus (midline frontal cortex). This functional imaging study assessed domain-general activity in the midline frontal cortex, which was remote from the infarct, in relation to performance on a standard test of spoken language in 16 chronic aphasic patients both before and after a rehabilitation programme. During scanning, participants heard simple sentences, with each listening trial followed immediately by a trial in which they repeated back the previous sentence. Listening to sentences in the context of a listen–repeat task was expected to activate regions involved in both language-specific processes (speech perception and comprehension, verbal working memory and pre-articulatory rehearsal) and a number of task-specific processes (including attention to utterances and attempts to overcome pre-response conflict and decision uncertainty during impaired speech perception). To visualize the same system in healthy participants, sentences were presented to them as three-channel noise-vocoded speech, thereby impairing speech perception and assessing whether this evokes domain general cognitive systems. As expected, contrasting the more difficult task of perceiving and preparing to repeat noise-vocoded speech with the same task on clear speech demonstrated increased activity in the midline frontal cortex in the healthy participants. The same region was activated in the aphasic patients as they listened to standard (undistorted) sentences. Using a region of interest defined from the data on the healthy participants, data from the midline frontal cortex was obtained from the patients. Across the group and across different scanning sessions, activity correlated significantly with the patients’ communicative abilities. This correlation was not influenced by the sizes of the lesion or the patients’ chronological ages. This is the first study that has directly correlated activity in a domain general system, specifically the salience network, with residual language performance in post-stroke aphasia. It provides direct evidence in support of the clinical intuition that domain-general cognitive control is an essential factor contributing to the potential for recovery from aphasic stroke.
                Bookmark

                Author and article information

                Journal
                Journal of Neurology, Neurosurgery & Psychiatry
                J Neurol Neurosurg Psychiatry
                BMJ
                0022-3050
                1468-330X
                September 12 2019
                October 2019
                October 2019
                May 04 2019
                : 90
                : 10
                : 1147-1155
                Article
                10.1136/jnnp-2018-319649
                4b05e05a-e3d8-4e19-b2f6-1930b2982940
                © 2019
                History

                Comments

                Comment on this article