6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transplantation of neural stem cells preconditioned with high-mobility group box 1 facilitates functional recovery after spinal cord injury in rats

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spinal cord injury (SCI) is a devastating disorder that often results in temporary and/or permanent functional impairment below the injured level. To date, few satisfactory therapeutic strategies are available to treat SCI. Hence, exploring novel strategies for SCI is an essential public health concern. Cell transplantation therapy, which is associated with neuroprotection, immunomodulation, axon regeneration, neuronal relay formation and myelin regeneration, provides a promising therapeutic strategy for SCI. The neuronal stem cell (NSC) preconditioning method is an emerging approach, which facilitates NSC survival and neuronal differentiation after implantation. The aim of the present study was to develop a feasible candidate for cell-based therapy following SCI in rats and to investigate the role of high mobility group box-1 (HMGB1) in NSC activation. The results of the present study showed that transplantation of NSCs, preconditioned with 1 ng/ml HMGB1, facilitated functional improvement of injured spinal cords, as indicated by Basso, Beattie and Bresnahan mean scores, mechanical hypersensitivity and cold stimulation. Meanwhile, the histological examination of hematoxylin and eosin staining indicated that engraftment of HMGB1-preconditioned NSCs resulted in decreased atrophy of the injured spinal cord. Meanwhile, the transplantation of HMGB1-preconditioned NSCs resulted in an increased number of functional Nissl bodies in neurons, as detected by Nissl staining, and an increase in the number of βIII-tubulin + cells in the epicenter of injured spinal cords in rats with SCI. In addition, the results also demonstrated that 1 ng/ml HMGB1 promoted the differentiation of NSCs into neurons, and that the ERK signaling pathway played an important role in this process. In conclusion, the present data indicated that the preconditioning strategy with 1 ng/ml HMGB1 may present a feasible candidate for cell-based therapy following SCI in rats, which may enlarge the scope of HMGB1 in NSC activation.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection.

          Injury reproducibility is an important characteristic of experimental models of spinal cord injuries (SCI) because it limits the variability in locomotor and anatomical outcome measures. Recently, a more sensitive locomotor rating scale, the Basso, Beattie, and Bresnahan scale (BBB), was developed but had not been tested on rats with severe SCI complete transection. Rats had a 10-g rod dropped from heights of 6.25, 12.5, 25, and 50 mm onto the exposed cord at Tl 0 using the NYU device. A subset of rats with 25 and 50 mm SCI had subsequent spinal cord transection (SCI + TX) and were compared to rats with transection only (TX) in order to ascertain the dependence of recovery on descending systems. After 7-9 weeks of locomotor testing, the percentage of white matter measured from myelin-stained cross sections through the lesion center was significantly different between all the groups with the exception of 12.5 vs 25 mm and 25 vs 50 mm groups. Locomotor recovery was greatest for the 6.25-mm group and least for the 50-mm group and was correlated positively to the amount of tissue sparing at the lesion center (p 0.05). Thus, spared descending systems appear to modify segmental systems which produce greater behavioral improvements than isolated cord systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell transplantation therapy for spinal cord injury

            The consequences of spinal cord injury are often severe and irreversible; cell transplantation has emerged as a potential treatment. In this Review, the authors highlight mechanisms through which cell transplantation is thought to promote functional improvements and the obstacles to making cell transplantation a viable therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neural stem/progenitor cell transplantation for spinal cord injury treatment; A systematic review and meta-analysis.

              Despite the vast improvements of cell therapy in spinal cord injury treatment, no optimum protocol has been developed for application of neural stem/progenitor cells. In this regard, the present meta-analysis showed that the efficacy of the neural stem/progenitor cell (NSPC) transplantation depends mainly on injury model, intervention phase, transplanted cell count, immunosuppressive use, and probably stem cell source. Improved functional recovery post NSPC transplantation was found to be higher in transection and contusion models. Moreover, NSPC transplantation in acute phase of spinal injury was found to have better functional recovery. Higher doses (>3×10(6)cell/kg) were also shown to be optimum for transplantation, but immunosuppressive agent administration negatively affected the motor function recovery. Scaffold use in NSPC transplantation could also effectively raise functional recovery.
                Bookmark

                Author and article information

                Journal
                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                1791-2997
                1791-3004
                December 2020
                06 October 2020
                06 October 2020
                : 22
                : 6
                : 4725-4733
                Affiliations
                [1 ]Department of Spinal Surgery, Daping Hospital, Research Institute of Surgery, Third Military Medical University (Army Medical University), Chongqing 400042, P.R. China
                [2 ]Department of Orthopedic, No. 517 Hospital of People's Liberation Army, Xinzhou, Shanxi 030002, P.R. China
                Author notes
                Correspondence to: Dr Ming-Yong Liu or Professor Jian-Hua Zhao, Department of Spinal Surgery, Daping Hospital, Research Institute of Surgery, Third Military Medical University (Army Medical University), 10 Yangzi River Road, Daping, Yuzhong, Chongqing 400042, P.R. China, E-mail: mingyong_liu@ 123456163.com , E-mail: zhaojianhua1964@ 123456yahoo.com
                Article
                mmr-22-06-4725
                10.3892/mmr.2020.11565
                7646886
                33174002
                b64f6f10-11b8-4ba0-a184-667077600693
                Copyright: © Xue et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 21 December 2019
                : 06 July 2020
                Categories
                Articles

                spinal cord injury,neural stem cells,high mobility group box-1,erk signaling pathway,differentiation

                Comments

                Comment on this article