62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human Bartonellosis: An Underappreciated Public Health Problem?

      review-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bartonella spp. bacteria can be found around the globe and are the causative agents of multiple human diseases. The most well-known infection is called cat-scratch disease, which causes mild lymphadenopathy and fever. As our knowledge of these bacteria grows, new presentations of the disease have been recognized, with serious manifestations. Not only has more severe disease been associated with these bacteria but also Bartonella species have been discovered in a wide range of mammals, and the pathogens’ DNA can be found in multiple vectors. This review will focus on some common mammalian reservoirs as well as the suspected vectors in relation to the disease transmission and prevalence. Understanding the complex interactions between these bacteria, their vectors, and their reservoirs, as well as the breadth of infection by Bartonella around the world will help to assess the impact of Bartonellosis on public health.

          Related collections

          Most cited references116

          • Record: found
          • Abstract: found
          • Article: not found

          Rats, cities, people, and pathogens: a systematic review and narrative synthesis of literature regarding the ecology of rat-associated zoonoses in urban centers.

          Urban Norway and black rats (Rattus norvegicus and Rattus rattus) are the source of a number of pathogens responsible for significant human morbidity and mortality in cities around the world. These pathogens include zoonotic bacteria (Leptospira interrogans, Yersina pestis, Rickettsia typhi, Bartonella spp., Streptobacillus moniliformis), viruses (Seoul hantavirus), and parasites (Angiostrongylus cantonensis). A more complete understanding of the ecology of these pathogens in people and rats is critical for determining the public health risks associated with urban rats and for developing strategies to monitor and mitigate those risks. Although the ecology of rat-associated zoonoses is complex, due to the multiple ways in which rats, people, pathogens, vectors, and the environment may interact, common determinants of human disease can still be identified. This review summarizes the ecology of zoonoses associated with urban rats with a view to identifying similarities, critical differences, and avenues for further study.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Experimental transmission of Bartonella henselae by the cat flea.

            Bartonella henselae is an emerging bacterial pathogen, causing cat scratch disease and bacillary angiomatosis. Cats bacteremic with B. henselae constitute a large reservoir from which humans become infected. Prevention of human infection depends on elucidation of the natural history and means of feline infection. We studied 47 cattery cats in a private home for 12 months to determine the longitudinal prevalence of B. henselae bacteremia, the prevalence of B. henselae in the fleas infesting these cats, and whether B. henselae is transmitted experimentally to cats via fleas. Vector-mediated transmission of B.henselae isolates was evaluated by removing fleas from the naturally bacteremic, flea-infested cattery cats and transferring these fleas to specific-pathogen-free (SPF) kittens housed in a controlled, arthropod-free University Animal Facility. B. henselae bacteremia was detected in 89% of the 47 naturally infected cattery cats. A total of 132 fleas were removed from cats whose blood was simultaneously cultured during different seasons and were tested individually for the presence of B. henselae DNA by PCR. B. henselae DNA was detected in 34% of 132 fleas, with seasonal variation, but without an association between the presence or the level of bacteremia in the corresponding cat. Cat fleas removed from bacteremic cattery cats transmitted B. henselae to five SPF kittens in two separate experiments; however, control SPF kittens housed with highly bacteremic kittens in the absence of fleas did not become infected. These data demonstrate that the cat flea readily transmits B. henselae to cats. Control of feline infestation with this arthropod vector may provide an important strategy for the prevention of infection of both humans and cats.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Detection and identification of Ehrlichia, Borrelia burgdorferi sensu lato, and Bartonella species in Dutch Ixodes ricinus ticks.

              A sensitive and specific PCR hybridization assay was developed for the simultaneous detection and identification of Ehrlichia and Borrelia burgdorferi sensu lato. In separate assays the 16S rRNA gene of Ehrlichia species and the 23S-5S rRNA spacer region of B. burgdorferi sensu lato were amplified and labeled by PCR. These PCR products were used in a reverse line blot hybridization assay in which oligonucleotide probes are covalently linked to a membrane in parallel lines. Hybridization of the samples with the oligonucleotide probes on this membrane enabled the simultaneous detection and identification of Ehrlichia, B. burgdorferi, and Bartonella species in 40 different samples. The application of the assay to DNA extracts from 121 Ixodes ricinus ticks collected from roe deer demonstrated that 45% of these ticks carried Ehrlichia DNA. More than half of these positive ticks carried species with 16S rRNA gene sequences closely related to those of E. phagocytophila and the human granulocytic ehrlichiosis agent. The majority of the other positive ticks were infected with a newly identified Ehrlichia-like species. In addition, 13% of the ticks were infected with one or more B. burgdorferi genospecies. In more than 70% of the ticks 16S rRNA gene sequences for Bartonella species or other species closely related to Bartonella were found. In five of the ticks both Ehrlichia and B. burgdorferi species were detected.
                Bookmark

                Author and article information

                Journal
                Trop Med Infect Dis
                Trop Med Infect Dis
                tropicalmed
                Tropical Medicine and Infectious Disease
                MDPI
                2414-6366
                19 April 2019
                June 2019
                : 4
                : 2
                : 69
                Affiliations
                Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA 70433, USA; mchesloc@ 123456tulane.edu
                Author notes
                [* ]Correspondence: members@ 123456tulane.edu ; Tel.: +(985)-871-6607
                Author information
                https://orcid.org/0000-0003-4051-7592
                Article
                tropicalmed-04-00069
                10.3390/tropicalmed4020069
                6630881
                31010191
                289fdf6d-c818-44a7-81f3-64de9576c54c
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 24 March 2019
                : 16 April 2019
                Categories
                Review

                bartonella,vector,bartonellosis,ticks,fleas,domestic animals,human
                bartonella, vector, bartonellosis, ticks, fleas, domestic animals, human

                Comments

                Comment on this article