33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Neural language networks at birth.

      Proceedings of the National Academy of Sciences of the United States of America
      Acoustic Stimulation, methods, Adult, Auditory Cortex, anatomy & histology, physiology, Brain Mapping, Female, Humans, Infant, Newborn, Language, Language Development, Learning, Linear Models, Magnetic Resonance Imaging, Male, Multivariate Analysis, Nerve Net, Speech

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ability to learn language is a human trait. In adults and children, brain imaging studies have shown that auditory language activates a bilateral frontotemporal network with a left hemispheric dominance. It is an open question whether these activations represent the complete neural basis for language present at birth. Here we demonstrate that in 2-d-old infants, the language-related neural substrate is fully active in both hemispheres with a preponderance in the right auditory cortex. Functional and structural connectivities within this neural network, however, are immature, with strong connectivities only between the two hemispheres, contrasting with the adult pattern of prevalent intrahemispheric connectivities. Thus, although the brain responds to spoken language already at birth, thereby providing a strong biological basis to acquire language, progressive maturation of intrahemispheric functional connectivity is yet to be established with language exposure as the brain develops.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: not found
          • Article: not found

          The assessment and analysis of handedness: The Edinburgh inventory

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The cortical organization of speech processing.

            Despite decades of research, the functional neuroanatomy of speech processing has been difficult to characterize. A major impediment to progress may have been the failure to consider task effects when mapping speech-related processing systems. We outline a dual-stream model of speech processing that remedies this situation. In this model, a ventral stream processes speech signals for comprehension, and a dorsal stream maps acoustic speech signals to frontal lobe articulatory networks. The model assumes that the ventral stream is largely bilaterally organized--although there are important computational differences between the left- and right-hemisphere systems--and that the dorsal stream is strongly left-hemisphere dominant.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ventral and dorsal pathways for language.

              Built on an analogy between the visual and auditory systems, the following dual stream model for language processing was suggested recently: a dorsal stream is involved in mapping sound to articulation, and a ventral stream in mapping sound to meaning. The goal of the study presented here was to test the neuroanatomical basis of this model. Combining functional magnetic resonance imaging (fMRI) with a novel diffusion tensor imaging (DTI)-based tractography method we were able to identify the most probable anatomical pathways connecting brain regions activated during two prototypical language tasks. Sublexical repetition of speech is subserved by a dorsal pathway, connecting the superior temporal lobe and premotor cortices in the frontal lobe via the arcuate and superior longitudinal fascicle. In contrast, higher-level language comprehension is mediated by a ventral pathway connecting the middle temporal lobe and the ventrolateral prefrontal cortex via the extreme capsule. Thus, according to our findings, the function of the dorsal route, traditionally considered to be the major language pathway, is mainly restricted to sensory-motor mapping of sound to articulation, whereas linguistic processing of sound to meaning requires temporofrontal interaction transmitted via the ventral route.
                Bookmark

                Author and article information

                Comments

                Comment on this article