36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Identification of genes that modify ataxin-1-induced neurodegeneration

      Nature
      Springer Nature America, Inc

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70.

          At least eight inherited human neurodegenerative diseases are caused by expansion of a polyglutamine domain within the respective proteins. This confers dominant toxicity on the proteins, leading to dysfunction and loss of neurons. Expanded polyglutamine proteins form aggregates, including nuclear inclusions (NI), within neurons, possibly due to misfolding of the proteins. NI are ubiquitinated and sequester molecular chaperone proteins and proteasome components, suggesting that disease pathogenesis includes activation of cellular stress pathways to help refold, disaggregate or degrade the mutant disease proteins. Overexpression of specific chaperone proteins reduces polyglutamine aggregation in transfected cells, but whether this alters toxicity is unknown. Using a Drosophila melanogaster model of polyglutamine disease, we show that directed expression of the molecular chaperone HSP70 suppresses polyglutamine-induced neurodegeneration in vivo. Suppression by HSP70 occurred without a visible effect on NI formation, indicating that polyglutamine toxicity can be dissociated from formation of large aggregates. Our studies indicate that HSP70 or related molecular chaperones may provide a means of treating these and other neurodegenerative diseases associated with abnormal protein conformation and toxicity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat.

            Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant inherited disorder characterized by degeneration of cerebellar Purkinje cells, spinocerebellar tracts, and selective brainstem neurons owing to the expansion of an unstable CAG trinucleotide repeat. To gain insight into the pathogenesis of the SCA1 mutation and the intergenerational stability of trinucleotide repeats in mice, we have generated transgenic mice expressing the human SCA1 gene with either a normal or an expanded CAG tract. Both transgenes were stable in parent to offspring transmissions. While all six transgenic lines expressing the unexpanded human SCA1 allele had normal Purkinje cells, transgenic animals from five of six lines with the expanded SCA1 allele developed ataxia and Purkinje cell degeneration. These data indicate that expanded CAG repeats expressed in Purkinje cells are sufficient to produce degeneration and ataxia and demonstrate that a mouse model can be established for neurodegeneration caused by CAG repeat expansions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons.

              Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder. Disease alleles contain a trinucleotide repeat expansion of variable length, which encodes polyglutamine tracts near the amino terminus of the HD protein, huntingtin. Polyglutamine-expanded huntingtin, but not normal huntingtin, forms nuclear inclusions. We describe a Drosophila model for HD. Amino-terminal fragments of human huntingtin containing tracts of 2, 75, and 120 glutamine residues were expressed in photoreceptor neurons in the compound eye. As in human neurons, polyglutamine-expanded huntingtin induced neuronal degeneration. The age of onset and severity of neuronal degeneration correlated with repeat length, and nuclear localization of huntingtin presaged neuronal degeneration. In contrast to other cell death paradigms in Drosophila, coexpression of the viral antiapoptotic protein, P35, did not rescue the cell death phenotype induced by polyglutamine-expanded huntingtin.
                Bookmark

                Author and article information

                Journal
                10.1038/35040584
                http://www.springer.com/tdm

                Comments

                Comment on this article