5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biogenic platinum based nanoparticles: Synthesis, characterization and their applications for cell cytotoxic, antibacterial effect, and direct alcohol fuel cells

      , , , , ,
      Chemical Engineering Journal Advances
      Elsevier BV

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents.

          Total equivalent antioxidant capacity (TEAC) and phenolic content of 26 common spice extracts from 12 botanical families were investigated. Qualitative and quantitative analyses of major phenolics in the spice extracts were systematically conducted by reversed-phase high-performance liquid chromatography (RP-HPLC). Many spices contained high levels of phenolics and demonstrated high antioxidant capacity. Wide variation in TEAC values (0.55-168.7 mmol/100 g) and total phenolic content (0.04-14.38 g of gallic acid equivalent/100 g) was observed. A highly positive linear relationship (R2= 0.95) obtained between TEAC values and total phenolic content showed that phenolic compounds in the tested spices contributed significantly to their antioxidant capacity. Major types of phenolic constituents identified in the spice extracts were phenolic acids, phenolic diterpenes, flavonoids, and volatile oils (e.g., aromatic compounds). Rosmarinic acid was the dominant phenolic compound in the six spices of the family Labiatae. Phenolic volatile oils were the principal active ingredients in most spices. The spices and related families with the highest antioxidant capacity were screened, e.g., clove in the Myrtaceae, cinnamon in the Lauraceae, oregano in the Labiatae, etc., representing potential sources of potent natural antioxidants for commercial exploitation. This study provides direct comparative data on antioxidant capacity and total and individual phenolics contents of the 26 spice extracts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Advances in green synthesis of nanoparticles

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review

              Metal nanoparticles (MNPs) and metal oxide nanoparticles (MONPs) are used in numerous fields. The new nano-based entities are being strongly generated and incorporated into everyday personal care products, cosmetics, medicines, drug delivery, and clothing to impact industrial and manufacturing sectors, which means that nanomaterials commercialization and nano-assisted device will continuously grow. They can be prepared by many methods such as green synthesis and the conventional chemical synthesis methods. Green synthesis includes infinite accession to produce MNPs and MONPs with demanding properties. The structure–function relationships between nanomaterials and key information for life cycle evaluation lead to the production of high execution nanoscale materials that are gentle and environmentally friendly. Majority of plants have features as sustainable and renewable suppliers compared with microbes and enzymes, as they have the ability to pick up almost 75% of the light energy and transform it into chemical energy, contain chemicals like antioxidants and sugars, and play fundamental roles in the manufacture of nanoparticles. Plants considered the main factory for the green synthesis of MNPs and MONPs, and until now, different plant species have been used to study this, but the determined conditions should be taken into consideration to execute this preparation. In this study, we focus on the biosynthesis procedures to synthesize MNPs and MONPs, including comparison between green synthesis and the classical chemistry methods as well as the several new orientation of green synthesis of nanoparticles from different plant parts, especially plant leaf extracts. Plants with reducing compounds is the preferred choice for the synthesis of noble metals – metal ions can be reduced to the corresponding metals in the absence of any other chemicals under microwave irradiation conditions using benign solvent, water. Noble metals such as gold (Au), silver (Ag), platinum (Pt), and palladium (Pd) and other metals such as copper (Cu) and nickel (Ni), which are characterized by their optical, electronic, mechanical, magnetic, and chemical properties, leading to different technological applications. Plants with numerous reducing agents are suitable candidates for the manufacture of noble MNPs. The main purpose of this research is to give a background on green nanotechnology prospective evolution, pertinent concerns appeared related to the green synthesis of metal and metal oxide from plant extracts, nanoparticle formation mechanism, and the importance of flavonoids, vitamin B 2 , ascorbic acid (vitamin C), and phenolic compounds in the MNP and MONP production. The traditional sorghum beers are produced in many countries in Africa, but diversity in the production process may depend on the geographic localization. These beers are very rich in calories; B-group vitamins including thiamine, folic acid, riboflavin, and nicotinic acid; and essential amino acids such as lysine. However, the Western beers are more attractive than the traditional sorghum beers. The traditional sorghum beers have poor hygienic quality, organoleptic variations, and shorter shelf life compared with the Western beers. Many research studies on traditional sorghum beers have been carried out and documented in several African countries, especially the microbiological and biochemical properties, the technologies used in the manufacture processes, and synthetic characteristics of African traditional sorghum beers (ikigage, merissa, doro, dolo, pito, amgba, and tchoukoutou). The excellent resources for the production of greener biomaterials are plants and considerable advances have been achieved in many fields such as biotechnology and gene transfer. The manufactured biological nanomaterials have a great application in the pharmaceutical industry such as novel pharmaceuticals preparation, drug delivery personification procedures, and production of functional nanodevices.
                Bookmark

                Author and article information

                Contributors
                Journal
                Chemical Engineering Journal Advances
                Chemical Engineering Journal Advances
                Elsevier BV
                26668211
                May 2023
                May 2023
                : 14
                : 100471
                Article
                10.1016/j.ceja.2023.100471
                676483da-5770-46fa-a6a7-01054e84427f
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article