116
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Glutathione and mitochondria.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glutathione (GSH) is the main non-protein thiol in cells whose functions are dependent on the redox-active thiol of its cysteine moiety that serves as a cofactor for a number of antioxidant and detoxifying enzymes. While synthesized exclusively in the cytosol from its constituent amino acids, GSH is distributed in different compartments, including mitochondria where its concentration in the matrix equals that of the cytosol. This feature and its negative charge at physiological pH imply the existence of specific carriers to import GSH from the cytosol to the mitochondrial matrix, where it plays a key role in defense against respiration-induced reactive oxygen species and in the detoxification of lipid hydroperoxides and electrophiles. Moreover, as mitochondria play a central strategic role in the activation and mode of cell death, mitochondrial GSH has been shown to critically regulate the level of sensitization to secondary hits that induce mitochondrial membrane permeabilization and release of proteins confined in the intermembrane space that once in the cytosol engage the molecular machinery of cell death. In this review, we summarize recent data on the regulation of mitochondrial GSH and its role in cell death and prevalent human diseases, such as cancer, fatty liver disease, and Alzheimer's disease.

          Related collections

          Most cited references155

          • Record: found
          • Abstract: found
          • Article: not found

          Glutathione transferases.

          This review describes the three mammalian glutathione transferase (GST) families, namely cytosolic, mitochondrial, and microsomal GST, the latter now designated MAPEG. Besides detoxifying electrophilic xenobiotics, such as chemical carcinogens, environmental pollutants, and antitumor agents, these transferases inactivate endogenous alpha,beta-unsaturated aldehydes, quinones, epoxides, and hydroperoxides formed as secondary metabolites during oxidative stress. These enzymes are also intimately involved in the biosynthesis of leukotrienes, prostaglandins, testosterone, and progesterone, as well as the degradation of tyrosine. Among their substrates, GSTs conjugate the signaling molecules 15-deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ2) and 4-hydroxynonenal with glutathione, and consequently they antagonize expression of genes trans-activated by the peroxisome proliferator-activated receptor gamma (PPARgamma) and nuclear factor-erythroid 2 p45-related factor 2 (Nrf2). Through metabolism of 15d-PGJ2, GST may enhance gene expression driven by nuclear factor-kappaB (NF-kappaB). Cytosolic human GST exhibit genetic polymorphisms and this variation can increase susceptibility to carcinogenesis and inflammatory disease. Polymorphisms in human MAPEG are associated with alterations in lung function and increased risk of myocardial infarction and stroke. Targeted disruption of murine genes has demonstrated that cytosolic GST isoenzymes are broadly cytoprotective, whereas MAPEG proteins have proinflammatory activities. Furthermore, knockout of mouse GSTA4 and GSTZ1 leads to overexpression of transferases in the Alpha, Mu, and Pi classes, an observation suggesting they are part of an adaptive mechanism that responds to endogenous chemical cues such as 4-hydroxynonenal and tyrosine degradation products. Consistent with this hypothesis, the promoters of cytosolic GST and MAPEG genes contain antioxidant response elements through which they are transcriptionally activated during exposure to Michael reaction acceptors and oxidative stress.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glutathione peroxidases.

            With increasing evidence that hydroperoxides are not only toxic but rather exert essential physiological functions, also hydroperoxide removing enzymes have to be re-viewed. In mammals, the peroxidases inter alia comprise the 8 glutathione peroxidases (GPx1-GPx8) so far identified. Since GPxs have recently been reviewed under various aspects, we here focus on novel findings considering their diverse physiological roles exceeding an antioxidant activity. GPxs are involved in balancing the H2O2 homeostasis in signalling cascades, e.g. in the insulin signalling pathway by GPx1; GPx2 plays a dual role in carcinogenesis depending on the mode of initiation and cancer stage; GPx3 is membrane associated possibly explaining a peroxidatic function despite low plasma concentrations of GSH; GPx4 has novel roles in the regulation of apoptosis and, together with GPx5, in male fertility. Functions of GPx6 are still unknown, and the proposed involvement of GPx7 and GPx8 in protein folding awaits elucidation. Collectively, selenium-containing GPxs (GPx1-4 and 6) as well as their non-selenium congeners (GPx5, 7 and 8) became key players in important biological contexts far beyond the detoxification of hydroperoxides. This article is part of a Special Issue entitled Cellular functions of glutathione. Copyright © 2012 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Hydroperoxide metabolism in mammalian organs.

                Bookmark

                Author and article information

                Journal
                Front Pharmacol
                Frontiers in pharmacology
                Frontiers Media SA
                1663-9812
                1663-9812
                2014
                : 5
                Affiliations
                [1 ] Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC) Barcelona, Spain ; Liver Unit, Hospital Clínic, Centre Esther Koplowitz, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Barcelona, Spain.
                [2 ] Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC) Barcelona, Spain ; Liver Unit, Hospital Clínic, Centre Esther Koplowitz, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Barcelona, Spain ; Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, University of Southern California Los Angeles, CA, USA.
                Article
                10.3389/fphar.2014.00151
                4079069
                25024695
                eceb0b66-aeaa-4527-8b3a-a1f9610714b2
                History

                Alzheimer disease,cholesterol,glutathione,mitochondria,reactive oxygen species,steatohepatitis

                Comments

                Comment on this article