5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The problem of morphogenesis: unscripted biophysical control systems in plants

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The relative simplicity of plant developmental systems, having evolved within the universal constraints imposed by the plant cell wall, may allow us to outline a consistent developmental narrative that is not currently possible in the animal kingdom. In this article, I discuss three aspects of the development of the mature form in plants, approaching them in terms of the role played by the biophysics and mechanics of the cell wall during growth. First, I discuss axis extension in terms of a loss of stability-based model of cell wall stress relaxation and I introduce the possibility that cell wall stress relaxation can be modeled as a binary switch. Second, I consider meristem shape and surface conformation as a controlling element in the morphogenetic circuitry of plant organogenesis at the apex. Third, I approach the issue of reproductive differentiation and propose that the multicellular sporangium, a universal feature of land plants, acts as a stress–mechanical lens, focusing growth-induced stresses to create a geometrically precise mechanical singularity that can serve as an inducing developmental signal triggering the initiation of reproductive differentiation. Lastly, I offer these three examples of biophysically integrated control processes as entry points into a narrative that provides an independent, nongenetic context for understanding the evolution of the apoplast and the morphogenetic ontogeny of multicellular land plants.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Land plant evolutionary timeline: gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates.

          • Land plants play an essential role in the evolution of terrestrial life. Their time of origin and diversification is fundamental to understanding the evolution of life on land. We investigated the timing and the rate of molecular evolution of land plants, evaluating the effects of different types of molecular data, including temporal information from fossils, and using different molecular clock methods. • Ages and absolute rates were estimated independently with two substitutionally different data sets: a highly conserved 4-gene data set and matK, a fast-evolving gene. The vascular plant backbone and the crown nodes of all major lineages were calibrated with fossil-derived ages. Dates and absolute rates were estimated while including or excluding the calibrations and using two relaxed clocks that differ in their implementation of temporal autocorrelation. • Land plants diverged from streptophyte alga 912 (870-962) million years ago (Mya) but diversified into living lineages 475 (471-480) Mya. Ages estimated for all major land-plant lineages agree with their fossil record, except for angiosperms. Different genes estimated very similar ages and correlated absolute rates across the tree. Excluding calibrations resulted in the greatest age differences. Different relaxed clocks provided similar ages, but different and uncorrelated absolute rates. • Whole-genome rate accelerations or decelerations may underlie the similar ages and correlated absolute rates estimated with different genes. We suggest that pronounced substitution rate changes around the angiosperm crown node may represent a challenge for relaxed clocks to model adequately.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The evolutionary origin of animal cellulose synthase.

            Urochordates are the only animals that produce cellulose, a polysaccharide existing primarily in the extracellular matrices of plant, algal, and bacterial cells. Here we report a Ciona intestinalis homolog of cellulose synthase, which is the core catalytic subunit of multi-enzyme complexes where cellulose biosynthesis occurs. The Ciona cellulose synthase gene, Ci-CesA, is a fusion of a cellulose synthase domain and a cellulase (cellulose-hydrolyzing enzyme) domain. Both the domains have no animal homologs in public databases. Exploiting this fusion of atypical genes, we provided evidence of a likely lateral transfer of a bacterial cellulose synthase gene into the urochordate lineage. According to fossil records, this likely lateral acquisition of the cellulose synthase gene may have occurred in the last common ancestor of extant urochordates more than 530 million years ago. Whole-mount in situ hybridization analysis revealed the expression of Ci-CesA in C. intestinalis embryos, and the expression pattern of Ci-CesA was spatiotemporally consistent with observed cellulose synthesis in vivo. We propose here that urochordates may use a laterally acquired "homologous" gene for an analogous process of cellulose synthesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cooperation and conflict in the evolution of multicellularity.

              Multicellular organisms probably originated as groups of cells formed in several ways, including cell proliferation from a group of founder cells and aggregation. Cooperation among cells benefits the group, but may be costly (altruistic) or beneficial (synergistic) to individual cooperating cells. In this paper, we study conflict mediation, the process by which genetic modifiers evolve that enhance cooperation by altering the parameters of development or rules of formation of cell groups. We are particularly interested in the conditions under which these modifiers lead to a new higher-level unit of selection with increased cooperation among group members and heritable variation in fitness at the group level. By sculpting the fitness variation and opportunity for selection at the two levels, conflict modifiers create new functions at the organism level. An organism is more than a group of cooperating cells related by common descent; organisms require adaptations that regulate conflict within. Otherwise their continued evolution is frustrated by the creation of within-organism variation and conflict between levels of selection. The evolution of conflict modifiers is a necessary prerequisite to the emergence of individuality and the continued well being of the organism. Conflict leads--through the evolution of adaptations that reduce i--to greater individuality and harmony for the organism.
                Bookmark

                Author and article information

                Contributors
                Philip.Lintilhac@uvm.edu
                Journal
                Protoplasma
                Protoplasma
                Protoplasma
                Springer Vienna (Vienna )
                0033-183X
                1615-6102
                12 July 2013
                12 July 2013
                2014
                : 251
                : 25-36
                Affiliations
                Department of Plant Biology, The University of Vermont, 63 Carrigan Drive, Burlington, VT 05405 USA
                Author notes

                Handling Editor: David Robinson

                Article
                522
                10.1007/s00709-013-0522-y
                3893470
                23846861
                9e4ca79c-0445-4b33-8047-6ac552bac312
                © The Author(s) 2013

                Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

                History
                : 11 June 2013
                : 14 June 2013
                Categories
                Review Article
                Custom metadata
                © Springer-Verlag Wien 2014

                Molecular biology
                morphogenesis,loss of stability,axis extension,meristem shape,surface conformation,reproductive differentiation

                Comments

                Comment on this article