45
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Biophysical Model of the Mitochondrial Respiratory System and Oxidative Phosphorylation

      research-article
      PLoS Computational Biology
      Public Library of Science

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A computational model for the mitochondrial respiratory chain that appropriately balances mass, charge, and free energy transduction is introduced and analyzed based on a previously published set of data measured on isolated cardiac mitochondria. The basic components included in the model are the reactions at complexes I, III, and IV of the electron transport system, ATP synthesis at F 1F 0 ATPase, substrate transporters including adenine nucleotide translocase and the phosphate–hydrogen co-transporter, and cation fluxes across the inner membrane including fluxes through the K +/H + antiporter and passive H + and K + permeation. Estimation of 16 adjustable parameter values is based on fitting model simulations to nine independent data curves. The identified model is further validated by comparison to additional datasets measured from mitochondria isolated from rat heart and liver and observed at low oxygen concentration. To obtain reasonable fits to the available data, it is necessary to incorporate inorganic-phosphate-dependent activation of the dehydrogenase activity and the electron transport system. Specifically, it is shown that a model incorporating phosphate-dependent activation of complex III is able to reasonably reproduce the observed data. The resulting validated and verified model provides a foundation for building larger and more complex systems models and investigating complex physiological and pathophysiological interactions in cardiac energetics.

          Abstract

          Synopsis

          Cells are able to perform tasks that consume energy (such as producing mechanical force in muscle contraction) by using chemical energy delivered in the form of a chemical compound called adenosine triphosphate, or ATP. Two Nobel Prizes were awarded (in 1978 to Peter D. Mitchell and in 1997 to Paul D. Boyer and John E. Walker) for the determination of how ATP is synthesized from the components adenosine diphosphate (ADP) and inorganic phosphate in a subcellular body called the mitochondrion. The operating theory, called the chemiosmotic theory, describes how a driving force called the proton motive force, which arises from the sum of contributions from the electrical potential and the hydrogen ion concentration difference across the mitochondrial inner membrane, is developed by reactions catalyzed by certain enzymes and consumed in generating ATP. Yet, to date, no computer model has successfully described the development and consumption of both the chemical and electrical components of the proton motive force in a thermodynamically balanced simulation. Beard introduces such a model, which is extensively validated based on previously published sets of data obtained on isolated mitochondria. The model is used to test hypotheses about how intracellular respiration is regulated; this model could serve as a foundation for investigating the control of mitochondrial function and for developing larger integrated simulations of cellular metabolism.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Direct measurement of specific membrane capacitance in neurons.

          The specific membrane capacitance (C(m)) of a neuron influences synaptic efficacy and determines the speed with which electrical signals propagate along dendrites and unmyelinated axons. The value of this important parameter remains controversial. In this study, C(m) was estimated for the somatic membrane of cortical pyramidal neurons, spinal cord neurons, and hippocampal neurons. A nucleated patch was pulled and a voltage-clamp step was applied. The exponential decay of the capacitative charging current was analyzed to give the total membrane capacitance, which was then divided by the observed surface area of the patch. C(m) was 0.9 microF/cm(2) for each class of neuron. To test the possibility that membrane proteins may alter C(m), embryonic kidney cells (HEK-293) were studied before and after transfection with a plasmid coding for glycine receptor/channels. The value of C(m) was indistinguishable in untransfected cells and in transfected cells expressing a high level of glycine channels, indicating that differences in transmembrane protein content do not significantly affect C(m). Thus, to a first approximation, C(m) may be treated as a "biological constant" across many classes of neuron.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The cytochrome bc1 complex: function in the context of structure.

            The bc1 complexes are intrinsic membrane proteins that catalyze the oxidation of ubihydroquinone and the reduction of cytochrome c in mitochondrial respiratory chains and bacterial photosynthetic and respiratory chains. The bc1 complex operates through a Q-cycle mechanism that couples electron transfer to generation of the proton gradient that drives ATP synthesis. Genetic defects leading to mutations in proteins of the respiratory chain, including the subunits of the bc1 complex, result in mitochondrial myopathies, many of which are a direct result of dysfunction at catalytic sites. Some myopathies, especially those in the cytochrome b subunit, exacerbate free-radical damage by enhancing superoxide production at the ubihydroquinone oxidation site. This bypass reaction appears to be an unavoidable feature of the reaction mechanism. Cellular aging is largely attributable to damage to DNA and proteins from the reactive oxygen species arising from superoxide and is a major contributing factor in many diseases of old age. An understanding of the mechanism of the bc1 complex is therefore central to our understanding of the aging process. In addition, a wide range of inhibitors that mimic the quinone substrates are finding important applications in clinical therapy and agronomy. Recent structural studies have shown how many of these inhibitors bind, and have provided important clues to the mechanism of action and the basis of resistance through mutation. This paper reviews recent advances in our understanding of the mechanism of the bc1 complex and their relation to these physiologically important issues in the context of the structural information available.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics.

              We present an integrated thermokinetic model describing control of cardiac mitochondrial bioenergetics. The model describes the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and mitochondrial Ca(2+) handling. The kinetic component of the model includes effectors of the TCA cycle enzymes regulating production of NADH and FADH(2), which in turn are used by the electron transport chain to establish a proton motive force (Delta mu(H)), driving the F(1)F(0)-ATPase. In addition, mitochondrial matrix Ca(2+), determined by Ca(2+) uniporter and Na(+)/Ca(2+) exchanger activities, regulates activity of the TCA cycle enzymes isocitrate dehydrogenase and alpha-ketoglutarate dehydrogenase. The model is described by twelve ordinary differential equations for the time rate of change of mitochondrial membrane potential (Delta Psi(m)), and matrix concentrations of Ca(2+), NADH, ADP, and TCA cycle intermediates. The model is used to predict the response of mitochondria to changes in substrate delivery, metabolic inhibition, the rate of adenine nucleotide exchange, and Ca(2+). The model is able to reproduce, qualitatively and semiquantitatively, experimental data concerning mitochondrial bioenergetics, Ca(2+) dynamics, and respiratory control. Significant increases in oxygen consumption (V(O(2))), proton efflux, NADH, and ATP synthesis, in response to an increase in cytoplasmic Ca(2+), are obtained when the Ca(2+)-sensitive dehydrogenases are the main rate-controlling steps of respiratory flux. These responses diminished when control is shifted downstream (e.g., the respiratory chain or adenine nucleotide translocator). The time-dependent behavior of the model, under conditions simulating an increase in workload, closely reproduces experimentally observed mitochondrial NADH dynamics in heart trabeculae subjected to changes in pacing frequency. The steady-state and time-dependent behavior of the model support the hypothesis that mitochondrial matrix Ca(2+) plays an important role in matching energy supply with demand in cardiac myocytes.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                pcbi
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                September 2005
                9 September 2005
                : 1
                : 4
                : e36
                Affiliations
                [1]Biotechnology and Bioengineering Center, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
                University of California at San Diego, United States of America
                Author notes
                Article
                05-PLCB-RA-0080R4 plcb-01-04-01
                10.1371/journal.pcbi.0010036
                1201326
                16163394
                9f297a30-57f3-4fe9-abfb-83b38164b26d
                Copyright: © 2005 Beard. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 19 April 2005
                : 3 August 2005
                Categories
                Research Article
                Bioinformatics - Computational Biology
                Cell Biology
                Diabetes - Endocrinology - Metabolism
                Systems Biology
                Eukaryotes
                Custom metadata
                Beard DA (2005) A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation. PLoS Comput Biol 1(4): e36.

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article