3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Revealing the molecular landscape of human placenta: a systematic review and meta-analysis of single-cell RNA sequencing studies.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With increasing significance of developmental programming effects associated with placental dysfunction, more investigations are devoted to improving the characterization and understanding of placental signatures in health and disease. The placenta is a transitory but dynamic organ adapting to the shifting demands of fetal development and available resources of the maternal supply throughout pregnancy. Trophoblasts (cytotrophoblasts, syncytiotrophoblasts, and extravillous trophoblasts) are placental-specific cell types responsible for the main placental exchanges and adaptations. Transcriptomic studies with single-cell resolution have led to advances in understanding the placenta's role in health and disease. These studies, however, often show discrepancies in characterization of the different placental cell types.

          Related collections

          Most cited references188

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          SCANPY : large-scale single-cell gene expression data analysis

          Scanpy is a scalable toolkit for analyzing single-cell gene expression data. It includes methods for preprocessing, visualization, clustering, pseudotime and trajectory inference, differential expression testing, and simulation of gene regulatory networks. Its Python-based implementation efficiently deals with data sets of more than one million cells (https://github.com/theislab/Scanpy). Along with Scanpy, we present AnnData, a generic class for handling annotated data matrices (https://github.com/theislab/anndata).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The GTEx Consortium atlas of genetic regulatory effects across human tissues

            (2020)
            The Genotype-Tissue Expression (GTEx) project was established to characterize genetic effects on the transcriptome across human tissues and to link these regulatory mechanisms to trait and disease associations. Here, we present analyses of the version 8 data, examining 15,201 RNA-sequencing samples from 49 tissues of 838 postmortem donors. We comprehensively characterize genetic associations for gene expression and splicing in cis and trans, showing that regulatory associations are found for almost all genes, and describe the underlying molecular mechanisms and their contribution to allelic heterogeneity and pleiotropy of complex traits. Leveraging the large diversity of tissues, we provide insights into the tissue specificity of genetic effects and show that cell type composition is a key factor in understanding gene regulatory mechanisms in human tissues.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors

              Single-cell RNA sequencing (scRNA-seq) data are commonly affected by technical artifacts known as “doublets,” which limit cell throughput and lead to spurious biological conclusions. Here, we present a computational doublet detection tool—Doublet-Finder—that identifies doublets using only gene expression data. DoubletFinder predicts doublets according to each real cell’s proximity in gene expression space to artificial doublets created by averaging the transcriptional profile of randomly chosen cell pairs. We first use scRNA-seq datasets where the identity of doublets is known to show that DoubletFinder identifies doublets formed from transcriptionally distinct cells. When these doublets are removed, the identification of differentially expressed genes is enhanced. Second, we provide a method for estimating DoubletFinder input parameters, allowing its application across scRNA-seq datasets with diverse distributions of cell types. Lastly, we present “best practices” for DoubletFinder applications and illustrate that DoubletFinder is insensitive to an experimentally validated kidney cell type with “hybrid” expression features. scRNA-seq data interpretation is confounded by technical artifacts known as doublets—single-cell transcriptome data representing more than one cell. Moreover, scRNA-seq cellular throughput is purposefully limited to minimize doublet formation rates. By identifying cells sharing expression features with simulated doublets, DoubletFinder detects many real doublets and mitigates these two limitations.
                Bookmark

                Author and article information

                Journal
                Hum Reprod Update
                Human reproduction update
                Oxford University Press (OUP)
                1460-2369
                1355-4786
                Mar 13 2024
                Affiliations
                [1 ] Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Stockholm, Sweden.
                [2 ] INRAE, BREED, Université Paris-Saclay, UVSQ, Jouy-en-Josas, France.
                [3 ] Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France.
                [4 ] Center for Molecular Medicine, Karolinska University Hospital, Solna, Stockholm, Sweden.
                Article
                7628277
                10.1093/humupd/dmae006
                38478759
                5ddaa5ea-26ae-40af-8fd2-510f216843c1
                History

                single-cell RNA sequencing,marker genes,cell type annotation,trophoblasts,single-nucleus RNA sequencing

                Comments

                Comment on this article