12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Arabidopsis MAPK phosphatase 2 (MKP2) positively regulates oxidative stress tolerance and inactivates the MPK3 and MPK6 MAPKs.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Two closely related Arabidopsis mitogen-activated protein kinases (MAPKs), MPK3 and MPK6, are rapidly but transiently activated in plants exposed to ozone. Although the contribution of these MAPKs to control of redox stress has been examined extensively, it remains unclear whether the dual-specificity MKPs play an essential role in the regulation of these processes. To explore this question, specific knockdown of each of the five putative MKPs in Arabidopsis was performed, and the ozone sensitivity phenotype of each MKP-suppressed line was assessed. Silencing of only one previously uncharacterized MKP, designated AtMKP2, rendered the plants hypersensitive to oxidative stress. AtMKP2-suppressed plants displayed significantly prolonged MPK3 and MPK6 activation during ozone treatment, and recombinant AtMKP2 was able to dephosphorylate both phospho-MPK3 and phospho-MPK6 in vitro, providing direct evidence that AtMKP2 may target these oxidant-activated MAPKs. In addition, the in vitro phosphatase activity of AtMKP2 was enhanced by co-incubation with either recombinant MPK3 or MPK6. In AtMKP2:YFP-expressing plants, the fusion protein was localized predominantly in the nucleus, the same compartment into which ozone-activated MPK3 and MPK6 have previously been shown to be translocated. Taken together, these data suggest that AtMKP2, a novel MKP protein in Arabidopsis, acts upon MPK3 and -6, and serves as a positive regulator of the cellular response to oxidant challenge.

          Related collections

          Author and article information

          Journal
          J Biol Chem
          The Journal of biological chemistry
          American Society for Biochemistry & Molecular Biology (ASBMB)
          0021-9258
          0021-9258
          Aug 24 2007
          : 282
          : 34
          Affiliations
          [1 ] Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
          Article
          S0021-9258(18)80988-7
          10.1074/jbc.M701888200
          17586809
          1585f797-4038-47ba-865a-260c44d458fb
          History

          Comments

          Comment on this article