15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dissolution of the Disparate: Co-ordinate Regulation in Antibiotic Biosynthesis

      review-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Discovering new antibiotics is vital to combat the growing threat of antimicrobial resistance. Most currently used antibiotics originate from the natural products of actinomycete bacteria, particularly Streptomyces species, that were discovered over 60 years ago. However, genome sequencing has revealed that most antibiotic-producing microorganisms encode many more natural products than previously thought. Biosynthesis of these natural products is tightly regulated by global and cluster situated regulators (CSRs), most of which respond to unknown environmental stimuli, and this likely explains why many biosynthetic gene clusters (BGCs) are not expressed under laboratory conditions. One approach towards novel natural product discovery is to awaken these cryptic BGCs by re-wiring the regulatory control mechanism(s). Most CSRs bind intergenic regions of DNA in their own BGC to control compound biosynthesis, but some CSRs can control the biosynthesis of multiple natural products by binding to several different BGCs. These cross-cluster regulators present an opportunity for natural product discovery, as the expression of multiple BGCs can be affected through the manipulation of a single regulator. This review describes examples of these different mechanisms, including specific examples of cross-cluster regulation, and assesses the impact that this knowledge may have on the discovery of novel natural products.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          Discovery of microbial natural products by activation of silent biosynthetic gene clusters.

          Microorganisms produce a wealth of structurally diverse specialized metabolites with a remarkable range of biological activities and a wide variety of applications in medicine and agriculture, such as the treatment of infectious diseases and cancer, and the prevention of crop damage. Genomics has revealed that many microorganisms have far greater potential to produce specialized metabolites than was thought from classic bioactivity screens; however, realizing this potential has been hampered by the fact that many specialized metabolite biosynthetic gene clusters (BGCs) are not expressed in laboratory cultures. In this Review, we discuss the strategies that have been developed in bacteria and fungi to identify and induce the expression of such silent BGCs, and we briefly summarize methods for the isolation and structural characterization of their metabolic products.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The MerR family of transcriptional regulators.

            The MerR family is a group of transcriptional activators with similar N-terminal helix-turn-helix DNA binding regions and C-terminal effector binding regions that are specific to the effector recognised. The signature of the family is amino acid similarity in the first 100 amino acids, including a helix-turn-helix motif followed by a coiled-coil region. With increasing recognition of members of this class over the last decade, particularly with the advent of rapid bacterial genome sequencing, MerR-like regulators have been found in a wide range of bacterial genera, but not yet in archaea or eukaryotes. The few MerR-like regulators that have been studied experimentally have been shown to activate suboptimal sigma(70)-dependent promoters, in which the spacing between the -35 and -10 elements recognised by the sigma factor is greater than the optimal 17+/-1 bp. Activation of transcription is through protein-dependent DNA distortion. The majority of regulators in the family respond to environmental stimuli, such as oxidative stress, heavy metals or antibiotics. A subgroup of the family activates transcription in response to metal ions. This subgroup shows sequence similarity in the C-terminal effector binding region as well as in the N-terminal region, but it is not yet clear how metal discrimination occurs. This subgroup of MerR family regulators includes MerR itself and may have evolved to generate a variety of specific metal-responsive regulators by fine-tuning the sites of metal recognition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5

              Pseudomonas fluorescens Pf-5 is a plant commensal bacterium that inhabits the rhizosphere and produces secondary metabolites that suppress soilborne plant pathogens. The complete sequence of the 7.1-Mb Pf-5 genome was determined. We analyzed repeat sequences to identify genomic islands that, together with other approaches, suggested P. fluorescens Pf-5's recent lateral acquisitions include six secondary metabolite gene clusters, seven phage regions and a mobile genomic island. We identified various features that contribute to its commensal lifestyle on plants, including broad catabolic and transport capabilities for utilizing plant-derived compounds, the apparent ability to use a diversity of iron siderophores, detoxification systems to protect from oxidative stress, and the lack of a type III secretion system and toxins found in related pathogens. In addition to six known secondary metabolites produced by P. fluorescens Pf-5, three novel secondary metabolite biosynthesis gene clusters were also identified that may contribute to the biocontrol properties of P. fluorescens Pf-5. Supplementary information The online version of this article (doi:10.1038/nbt1110) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Journal
                Antibiotics (Basel)
                Antibiotics (Basel)
                antibiotics
                Antibiotics
                MDPI
                2079-6382
                18 June 2019
                June 2019
                : 8
                : 2
                : 83
                Affiliations
                [1 ]School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; t.mclean@ 123456uea.ac.uk (T.C.M.); r.devine@ 123456uea.ac.uk (R.D.)
                [2 ]Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
                Author notes
                Author information
                https://orcid.org/0000-0001-7646-7174
                https://orcid.org/0000-0003-0008-2184
                Article
                antibiotics-08-00083
                10.3390/antibiotics8020083
                6627628
                31216724
                57407012-3ea1-41a3-8995-baba71bffec8
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 31 May 2019
                : 14 June 2019
                Categories
                Review

                secondary metabolism,regulation,biosynthesis,antibiotics

                Comments

                Comment on this article