14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      HBV-Integration Studies in the Clinic: Role in the Natural History of Infection

      review-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hepatitis B virus (HBV) infection is a major global health problem causing acute and chronic liver disease that can lead to liver cirrhosis and hepatocellular carcinoma (HCC). HBV covalently closed circular DNA (cccDNA) is essential for viral replication and the establishment of a persistent infection. Integrated HBV DNA represents another stable form of viral DNA regularly observed in the livers of infected patients. HBV DNA integration into the host genome occurs early after HBV infection. It is a common occurrence during the HBV life cycle, and it has been detected in all the phases of chronic infection. HBV DNA integration has long been considered to be the main contributor to liver tumorigenesis. The recent development of highly sensitive detection methods and research models has led to the clarification of some molecular and pathogenic aspects of HBV integration. Though HBV integration does not lead to replication-competent transcripts, it can act as a stable source of viral RNA and proteins, which may contribute in determining HBV-specific T-cell exhaustion and favoring virus persistence. The relationship between HBV DNA integration and the immune response in the liver microenvironment might be closely related to the development and progression of HBV-related diseases. While many new antiviral agents aimed at cccDNA elimination or silencing have been developed, integrated HBV DNA remains a difficult therapeutic challenge.

          Related collections

          Most cited references153

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016

          Summary Background Monitoring levels and trends in premature mortality is crucial to understanding how societies can address prominent sources of early death. The Global Burden of Disease 2016 Study (GBD 2016) provides a comprehensive assessment of cause-specific mortality for 264 causes in 195 locations from 1980 to 2016. This assessment includes evaluation of the expected epidemiological transition with changes in development and where local patterns deviate from these trends. Methods We estimated cause-specific deaths and years of life lost (YLLs) by age, sex, geography, and year. YLLs were calculated from the sum of each death multiplied by the standard life expectancy at each age. We used the GBD cause of death database composed of: vital registration (VR) data corrected for under-registration and garbage coding; national and subnational verbal autopsy (VA) studies corrected for garbage coding; and other sources including surveys and surveillance systems for specific causes such as maternal mortality. To facilitate assessment of quality, we reported on the fraction of deaths assigned to GBD Level 1 or Level 2 causes that cannot be underlying causes of death (major garbage codes) by location and year. Based on completeness, garbage coding, cause list detail, and time periods covered, we provided an overall data quality rating for each location with scores ranging from 0 stars (worst) to 5 stars (best). We used robust statistical methods including the Cause of Death Ensemble model (CODEm) to generate estimates for each location, year, age, and sex. We assessed observed and expected levels and trends of cause-specific deaths in relation to the Socio-demographic Index (SDI), a summary indicator derived from measures of average income per capita, educational attainment, and total fertility, with locations grouped into quintiles by SDI. Relative to GBD 2015, we expanded the GBD cause hierarchy by 18 causes of death for GBD 2016. Findings The quality of available data varied by location. Data quality in 25 countries rated in the highest category (5 stars), while 48, 30, 21, and 44 countries were rated at each of the succeeding data quality levels. Vital registration or verbal autopsy data were not available in 27 countries, resulting in the assignment of a zero value for data quality. Deaths from non-communicable diseases (NCDs) represented 72·3% (95% uncertainty interval [UI] 71·2–73·2) of deaths in 2016 with 19·3% (18·5–20·4) of deaths in that year occurring from communicable, maternal, neonatal, and nutritional (CMNN) diseases and a further 8·43% (8·00–8·67) from injuries. Although age-standardised rates of death from NCDs decreased globally between 2006 and 2016, total numbers of these deaths increased; both numbers and age-standardised rates of death from CMNN causes decreased in the decade 2006–16—age-standardised rates of deaths from injuries decreased but total numbers varied little. In 2016, the three leading global causes of death in children under-5 were lower respiratory infections, neonatal preterm birth complications, and neonatal encephalopathy due to birth asphyxia and trauma, combined resulting in 1·80 million deaths (95% UI 1·59 million to 1·89 million). Between 1990 and 2016, a profound shift toward deaths at older ages occurred with a 178% (95% UI 176–181) increase in deaths in ages 90–94 years and a 210% (208–212) increase in deaths older than age 95 years. The ten leading causes by rates of age-standardised YLL significantly decreased from 2006 to 2016 (median annualised rate of change was a decrease of 2·89%); the median annualised rate of change for all other causes was lower (a decrease of 1·59%) during the same interval. Globally, the five leading causes of total YLLs in 2016 were cardiovascular diseases; diarrhoea, lower respiratory infections, and other common infectious diseases; neoplasms; neonatal disorders; and HIV/AIDS and tuberculosis. At a finer level of disaggregation within cause groupings, the ten leading causes of total YLLs in 2016 were ischaemic heart disease, cerebrovascular disease, lower respiratory infections, diarrhoeal diseases, road injuries, malaria, neonatal preterm birth complications, HIV/AIDS, chronic obstructive pulmonary disease, and neonatal encephalopathy due to birth asphyxia and trauma. Ischaemic heart disease was the leading cause of total YLLs in 113 countries for men and 97 countries for women. Comparisons of observed levels of YLLs by countries, relative to the level of YLLs expected on the basis of SDI alone, highlighted distinct regional patterns including the greater than expected level of YLLs from malaria and from HIV/AIDS across sub-Saharan Africa; diabetes mellitus, especially in Oceania; interpersonal violence, notably within Latin America and the Caribbean; and cardiomyopathy and myocarditis, particularly in eastern and central Europe. The level of YLLs from ischaemic heart disease was less than expected in 117 of 195 locations. Other leading causes of YLLs for which YLLs were notably lower than expected included neonatal preterm birth complications in many locations in both south Asia and southeast Asia, and cerebrovascular disease in western Europe. Interpretation The past 37 years have featured declining rates of communicable, maternal, neonatal, and nutritional diseases across all quintiles of SDI, with faster than expected gains for many locations relative to their SDI. A global shift towards deaths at older ages suggests success in reducing many causes of early death. YLLs have increased globally for causes such as diabetes mellitus or some neoplasms, and in some locations for causes such as drug use disorders, and conflict and terrorism. Increasing levels of YLLs might reflect outcomes from conditions that required high levels of care but for which effective treatments remain elusive, potentially increasing costs to health systems. Funding Bill & Melinda Gates Foundation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection.

            Hepatitis B virus (HBV) infection remains a global public health problem with changing epidemiology due to several factors including vaccination policies and migration. This Clinical Practice Guideline presents updated recommendations for the optimal management of HBV infection. Chronic HBV infection can be classified into five phases: (I) HBeAg-positive chronic infection, (II) HBeAg-positive chronic hepatitis, (III) HBeAg-negative chronic infection, (IV) HBeAg-negative chronic hepatitis and (V) HBsAg-negative phase. All patients with chronic HBV infection are at increased risk of progression to cirrhosis and hepatocellular carcinoma (HCC), depending on host and viral factors. The main goal of therapy is to improve survival and quality of life by preventing disease progression, and consequently HCC development. The induction of long-term suppression of HBV replication represents the main endpoint of current treatment strategies, while HBsAg loss is an optimal endpoint. The typical indication for treatment requires HBV DNA >2,000IU/ml, elevated ALT and/or at least moderate histological lesions, while all cirrhotic patients with detectable HBV DNA should be treated. Additional indications include the prevention of mother to child transmission in pregnant women with high viremia and prevention of HBV reactivation in patients requiring immunosuppression or chemotherapy. The long-term administration of a potent nucleos(t)ide analogue with high barrier to resistance, i.e., entecavir, tenofovir disoproxil or tenofovir alafenamide, represents the treatment of choice. Pegylated interferon-alfa treatment can also be considered in mild to moderate chronic hepatitis B patients. Combination therapies are not generally recommended. All treated and untreated patients should be monitored for treatment response and adherence, and the risk of progression and development of complications. HCC remains the major concern for treated chronic hepatitis B patients. Several subgroups of patients with HBV infection require specific focus. Future treatment strategies to achieve 'cure' of disease and new biomarkers are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global prevalence, treatment, and prevention of hepatitis B virus infection in 2016: a modelling study

              The 69th World Health Assembly approved the Global Health Sector Strategy to eliminate viral hepatitis by 2030. Although no virological cure exists for hepatitis B virus (HBV) infection, existing therapies to control viral replication and prophylaxis to minimise mother-to-child transmission make elimination of HBV feasible. We aimed to estimate the national, regional, and global prevalence of HBsAg in the general population and in the population aged 5 years in 2016, as well as coverage of prophylaxis, diagnosis, and treatment.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Viruses
                Viruses
                viruses
                Viruses
                MDPI
                1999-4915
                26 February 2021
                March 2021
                : 13
                : 3
                : 368
                Affiliations
                [1 ]Laboratory of Molecular Hepatology, Department of Human Pathology, University Hospital “G. Martino” of Messina, 98124 Messina, Italy
                [2 ]Laboratory of Molecular Hepatology, Department of Human Pathology, University of Messina, 98124 Messina, Italy; giuseppecaminiti8@ 123456gmail.com
                Author notes
                [* ]Correspondence: email: tpollicino@ 123456unime.it ; Tel.: +39-090-2213703
                Article
                viruses-13-00368
                10.3390/v13030368
                7996909
                33652619
                c7b1d6de-a636-4858-9879-fded37d25547
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 17 January 2021
                : 22 February 2021
                Categories
                Review

                Microbiology & Virology
                hepatitis b virus infection,chronic hepatitis b,hbv dna integration,hbsag,hbx,oxidative stress,double-stranded dna breaks

                Comments

                Comment on this article