33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-wide Diversity and Association Mapping for Capsaicinoids and Fruit Weight in Capsicum annuum L

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Accumulated capsaicinoid content and increased fruit size are traits resulting from Capsicum annuum domestication. In this study, we used a diverse collection of C. annuum to generate 66,960 SNPs using genotyping by sequencing. The study identified 1189 haplotypes containing 3413 SNPs. Length of individual linkage disequilibrium (LD) blocks varied along chromosomes, with regions of high and low LD interspersed with an average LD of 139 kb. Principal component analysis (PCA), Bayesian model based population structure analysis and an Euclidean tree built based on identity by state (IBS) indices revealed that the clustering pattern of diverse accessions are in agreement with capsaicin content (CA) and fruit weight (FW) classifications indicating the importance of these traits in shaping modern pepper genome. PCA and IBS were used in a mixed linear model of capsaicin and dihydrocapsaicin content and fruit weight to reduce spurious associations because of confounding effects of subpopulations in genome-wide association study (GWAS). Our GWAS results showed SNPs in Ankyrin-like protein, IKI3 family protein, ABC transporter G family and pentatricopeptide repeat protein are the major markers for capsaicinoids and of 16 SNPs strongly associated with FW in both years of the study, 7 are located in known fruit weight controlling genes.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Association mapping in structured populations.

          The use, in association studies, of the forthcoming dense genomewide collection of single-nucleotide polymorphisms (SNPs) has been heralded as a potential breakthrough in the study of the genetic basis of common complex disorders. A serious problem with association mapping is that population structure can lead to spurious associations between a candidate marker and a phenotype. One common solution has been to abandon case-control studies in favor of family-based tests of association, such as the transmission/disequilibrium test (TDT), but this comes at a considerable cost in the need to collect DNA from close relatives of affected individuals. In this article we describe a novel, statistically valid, method for case-control association studies in structured populations. Our method uses a set of unlinked genetic markers to infer details of population structure, and to estimate the ancestry of sampled individuals, before using this information to test for associations within subpopulations. It provides power comparable with the TDT in many settings and may substantially outperform it if there are conflicting associations in different subpopulations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes.

            The higher-plant shoot meristem is a dynamic structure whose maintenance depends on the coordination of two antagonistic processes, organ initiation and self-renewal of the stem cell population. In Arabidopsis shoot and floral meristems, the WUSCHEL (WUS) gene is required for stem cell identity, whereas the CLAVATA1, 2, and 3 (CLV) genes promote organ initiation. Our analysis of the interactions between these key regulators indicates that (1) the CLV genes repress WUS at the transcript level and that (2) WUS expression is sufficient to induce meristem cell identity and the expression of the stem cell marker CLV3. Our data suggest that the shoot meristem has properties of a self-regulatory system in which WUS/CLV interactions establish a feedback loop between the stem cells and the underlying organizing center.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Domestication of Plants in the Americas: Insights from Mendelian and Molecular Genetics

              Background Plant domestication occurred independently in four different regions of the Americas. In general, different species were domesticated in each area, though a few species were domesticated independently in more than one area. The changes resulting from human selection conform to the familiar domestication syndrome, though different traits making up this syndrome, for example loss of dispersal, are achieved by different routes in crops belonging to different families. Genetic and Molecular Analyses of Domestication Understanding of the genetic control of elements of the domestication syndrome is improving as a result of the development of saturated linkage maps for major crops, identification and mapping of quantitative trait loci, cloning and sequencing of genes or parts of genes, and discoveries of widespread orthologies in genes and linkage groups within and between families. As the modes of action of the genes involved in domestication and the metabolic pathways leading to particular phenotypes become better understood, it should be possible to determine whether similar phenotypes have similar underlying genetic controls, or whether human selection in genetically related but independently domesticated taxa has fixed different mutants with similar phenotypic effects. Conclusions Such studies will permit more critical analysis of possible examples of multiple domestications and of the origin(s) and spread of distinctive variants within crops. They also offer the possibility of improving existing crops, not only major food staples but also minor crops that are potential export crops for developing countries or alternative crops for marginal areas.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                30 November 2016
                2016
                : 6
                : 38081
                Affiliations
                [1 ]Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute , WV-25112, USA
                [2 ]Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University , Seoul 151-321, Republic of Korea
                [3 ]Genetic Improvement of Fruits and Vegetables Laboratory (USDA, ARS) , Beltsville, MD-20705, USA.
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep38081
                10.1038/srep38081
                5128918
                27901114
                d1dd162a-9e62-442a-9f1a-081780fb0c6e
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 13 July 2016
                : 03 November 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article