7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic diversity, population structure, and relationships in a collection of pepper ( Capsicum spp.) landraces from the Spanish centre of diversity revealed by genotyping-by-sequencing (GBS)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pepper ( Capsicum spp.) is one of the most important vegetable crops; however, pepper genomic studies lag behind those of other important Solanaceae. Here we present the results of a high-throughput genotyping-by-sequencing (GBS) study of a collection of 190 Capsicum spp. accessions, including 183 of five cultivated species ( C. annuum, C. chinense, C. frutescens, C. baccatum, and C. pubescens) and seven of the wild form C. annuum var. glabriusculum. Sequencing generated 6,766,231 high-quality read tags, of which 40.7% were successfully aligned to the reference genome. SNP calling yielded 4083 highly informative segregating SNPs. Genetic diversity and relationships of a subset of 148 accessions, of which a complete passport information was available, was studied using principal components analysis (PCA), discriminant analysis of principal components (DAPC), and phylogeny approaches. C. annuum, C. baccatum, and C. chinense were successfully separated by all methods. Our population was divided into seven clusters by DAPC, where C. frutescens accessions were clustered together with C. chinense. C. annuum var. glabriusculum accessions were spread into two distinct genetic pools, while European accessions were admixed and closely related. Separation of accessions was mainly associated to differences in fruit characteristics and origin. Phylogeny studies showed a close relation between Spanish and Mexican accessions, supporting the hypothesis that the first arose from a main genetic flow from the latter. Tajima’s D statistic values were consistent with positive selection in the C. annuum clusters, possibly related to domestication or selection towards traits of interest. This work provides comprehensive and relevant information on the origin and relationships of Spanish landraces and for future association mapping studies in pepper.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          An Improved Genotyping by Sequencing (GBS) Approach Offering Increased Versatility and Efficiency of SNP Discovery and Genotyping

          Highly parallel SNP genotyping platforms have been developed for some important crop species, but these platforms typically carry a high cost per sample for first-time or small-scale users. In contrast, recently developed genotyping by sequencing (GBS) approaches offer a highly cost effective alternative for simultaneous SNP discovery and genotyping. In the present investigation, we have explored the use of GBS in soybean. In addition to developing a novel analysis pipeline to call SNPs and indels from the resulting sequence reads, we have devised a modified library preparation protocol to alter the degree of complexity reduction. We used a set of eight diverse soybean genotypes to conduct a pilot scale test of the protocol and pipeline. Using ApeKI for GBS library preparation and sequencing on an Illumina GAIIx machine, we obtained 5.5 M reads and these were processed using our pipeline. A total of 10,120 high quality SNPs were obtained and the distribution of these SNPs mirrored closely the distribution of gene-rich regions in the soybean genome. A total of 39.5% of the SNPs were present in genic regions and 52.5% of these were located in the coding sequence. Validation of over 400 genotypes at a set of randomly selected SNPs using Sanger sequencing showed a 98% success rate. We then explored the use of selective primers to achieve a greater complexity reduction during GBS library preparation. The number of SNP calls could be increased by almost 40% and their depth of coverage was more than doubled, thus opening the door to an increase in the throughput and a significant decrease in the per sample cost. The approach to obtain high quality SNPs developed here will be helpful for marker assisted genomics as well as assessment of available genetic resources for effective utilisation in a wide number of species.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Domestication of Plants in the Americas: Insights from Mendelian and Molecular Genetics

            Background Plant domestication occurred independently in four different regions of the Americas. In general, different species were domesticated in each area, though a few species were domesticated independently in more than one area. The changes resulting from human selection conform to the familiar domestication syndrome, though different traits making up this syndrome, for example loss of dispersal, are achieved by different routes in crops belonging to different families. Genetic and Molecular Analyses of Domestication Understanding of the genetic control of elements of the domestication syndrome is improving as a result of the development of saturated linkage maps for major crops, identification and mapping of quantitative trait loci, cloning and sequencing of genes or parts of genes, and discoveries of widespread orthologies in genes and linkage groups within and between families. As the modes of action of the genes involved in domestication and the metabolic pathways leading to particular phenotypes become better understood, it should be possible to determine whether similar phenotypes have similar underlying genetic controls, or whether human selection in genetically related but independently domesticated taxa has fixed different mutants with similar phenotypic effects. Conclusions Such studies will permit more critical analysis of possible examples of multiple domestications and of the origin(s) and spread of distinctive variants within crops. They also offer the possibility of improving existing crops, not only major food staples but also minor crops that are potential export crops for developing countries or alternative crops for marginal areas.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multiple lines of evidence for the origin of domesticated chili pepper, Capsicum annuum, in Mexico.

              The study of crop origins has traditionally involved identifying geographic areas of high morphological diversity, sampling populations of wild progenitor species, and the archaeological retrieval of macroremains. Recent investigations have added identification of plant microremains (phytoliths, pollen, and starch grains), biochemical and molecular genetic approaches, and dating through (14)C accelerator mass spectrometry. We investigate the origin of domesticated chili pepper, Capsicum annuum, by combining two approaches, species distribution modeling and paleobiolinguistics, with microsatellite genetic data and archaeobotanical data. The combination of these four lines of evidence yields consensus models indicating that domestication of C. annuum could have occurred in one or both of two areas of Mexico: northeastern Mexico and central-east Mexico. Genetic evidence shows more support for the more northern location, but jointly all four lines of evidence support central-east Mexico, where preceramic macroremains of chili pepper have been recovered in the Valley of Tehuacán. Located just to the east of this valley is the center of phylogenetic diversity of Proto-Otomanguean, a language spoken in mid-Holocene times and the oldest protolanguage for which a word for chili pepper reconstructs based on historical linguistics. For many crops, especially those that do not have a strong archaeobotanical record or phylogeographic pattern, it is difficult to precisely identify the time and place of their origin. Our results for chili pepper show that expressing all data in similar distance terms allows for combining contrasting lines of evidence and locating the region(s) where cultivation and domestication of a crop began.
                Bookmark

                Author and article information

                Contributors
                +34 963879383 , adrodbur@upv.es
                Journal
                Hortic Res
                Hortic Res
                Horticulture Research
                Nature Publishing Group UK (London )
                2052-7276
                1 May 2019
                1 May 2019
                2019
                : 6
                : 54
                Affiliations
                ISNI 0000 0004 1770 5832, GRID grid.157927.f, Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, , Universitat Politècnica de València, ; 46022 Valencia, Spain
                Article
                132
                10.1038/s41438-019-0132-8
                6491490
                31044080
                457fb421-f0b1-4c64-aa60-abfa1a10793e
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 5 November 2018
                : 11 January 2019
                : 17 January 2019
                Funding
                Funded by: FundRef https://doi.org/10.13039/100007652, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (National Institute for Agricultural and Food Research and Technology);
                Award ID: RTA2014-00041-C02-02
                Award ID: RF2010-00025-00-00
                Award ID: RTA2013-00022-C02
                Award ID: RTA2013-00022-C02
                Award ID: RTA2014-00041-C02-02
                Award ID: RF2010-00025-00-00
                Award ID: RTA2013-00022-C02
                Award ID: RTA2014-00041-C02-02
                Award ID: RF2010-00025-00-00
                Award ID: RTA2013-00022-C02
                Award ID: RTA2014-00041-C02-02
                Award ID: RF2010-00025-00-00
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                plant domestication,plant breeding
                plant domestication, plant breeding

                Comments

                Comment on this article