49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Application of Hyperspectral Imaging and Chemometric Calibrations for Variety Discrimination of Maize Seeds

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hyperspectral imaging in the visible and near infrared (VIS-NIR) region was used to develop a novel method for discriminating different varieties of commodity maize seeds. Firstly, hyperspectral images of 330 samples of six varieties of maize seeds were acquired using a hyperspectral imaging system in the 380–1,030 nm wavelength range. Secondly, principal component analysis (PCA) and kernel principal component analysis (KPCA) were used to explore the internal structure of the spectral data. Thirdly, three optimal wavelengths (523, 579 and 863 nm) were selected by implementing PCA directly on each image. Then four textural variables including contrast, homogeneity, energy and correlation were extracted from gray level co-occurrence matrix (GLCM) of each monochromatic image based on the optimal wavelengths. Finally, several models for maize seeds identification were established by least squares-support vector machine (LS-SVM) and back propagation neural network (BPNN) using four different combinations of principal components (PCs), kernel principal components (KPCs) and textural features as input variables, respectively. The recognition accuracy achieved in the PCA-GLCM-LS-SVM model (98.89%) was the most satisfactory one. We conclude that hyperspectral imaging combined with texture analysis can be implemented for fast classification of different varieties of maize seeds.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Imaging spectrometry for Earth remote sensing.

          Imaging spectrometry, a new technique for the remote sensing of the earth, is now technically feasible from aircraft and spacecraft. The initial results show that remote, direct identification of surface materials on a picture-element basis can be accomplished by proper sampling of absorption features in the reflectance spectrum. The airborne and spaceborne sensors are capable of acquiring images simultaneously in 100 to 200 contiguous spectral bands. The ability to acquire laboratory-like spectra remotely is a major advance in remote sensing capability. Concomitant advances in computer technology for the reduction and storage of such potentially massive data sets are at hand, and new analytic techniques are being developed to extract the full information content of the data. The emphasis on the deterministic approach to multispectral data analysis as opposed to the statistical approaches used in the past should stimulate the development of new digital image-processing methodologies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Early detection of toxigenic fungi on maize by hyperspectral imaging analysis.

            Fungi can grow on many food commodities. Some fungal species, such as Aspergillus flavus, Aspergillus parasiticus, Aspergillus niger and Fusarium spp., can produce, under suitable conditions, mycotoxins, secondary metabolites which are toxic for humans and animals. Toxigenic fungi are a real issue, especially for the cereal industry. The aim of this work is to carry out a non destructive, hyperspectral imaging-based method to detect toxigenic fungi on maize kernels, and to discriminate between healthy and diseased kernels. A desktop spectral scanner equipped with an imaging based spectrometer ImSpector- Specim V10, working in the visible-near infrared spectral range (400-1000 nm) was used. The results show that the hyperspectral imaging is able to rapidly discriminate commercial maize kernels infected with toxigenic fungi from uninfected controls when traditional methods are not yet effective: i.e. from 48 h after inoculation with A. niger or A. flavus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Maize kernel hardness classification by near infrared (NIR) hyperspectral imaging and multivariate data analysis.

              The use of near infrared (NIR) hyperspectral imaging and hyperspectral image analysis for distinguishing between hard, intermediate and soft maize kernels from inbred lines was evaluated. NIR hyperspectral images of two sets (12 and 24 kernels) of whole maize kernels were acquired using a Spectral Dimensions MatrixNIR camera with a spectral range of 960-1662 nm and a sisuChema SWIR (short wave infrared) hyperspectral pushbroom imaging system with a spectral range of 1000-2498 nm. Exploratory principal component analysis (PCA) was used on absorbance images to remove background, bad pixels and shading. On the cleaned images, PCA could be used effectively to find histological classes including glassy (hard) and floury (soft) endosperm. PCA illustrated a distinct difference between glassy and floury endosperm along principal component (PC) three on the MatrixNIR and PC two on the sisuChema with two distinguishable clusters. Subsequently partial least squares discriminant analysis (PLS-DA) was applied to build a classification model. The PLS-DA model from the MatrixNIR image (12 kernels) resulted in root mean square error of prediction (RMSEP) value of 0.18. This was repeated on the MatrixNIR image of the 24 kernels which resulted in RMSEP of 0.18. The sisuChema image yielded RMSEP value of 0.29. The reproducible results obtained with the different data sets indicate that the method proposed in this paper has a real potential for future classification uses.
                Bookmark

                Author and article information

                Journal
                Sensors (Basel)
                Sensors (Basel)
                Sensors (Basel, Switzerland)
                Molecular Diversity Preservation International (MDPI)
                1424-8220
                December 2012
                12 December 2012
                : 12
                : 12
                : 17234-17246
                Affiliations
                [1 ]College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; E-Mails: xiaoleizhang@ 123456zju.edu.cn (X.Z.); fliu@ 123456zju.edu.cn (F.L.); xiaolili@ 123456zju.edu.cn (X.L.)
                [2 ]Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
                [3 ]Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, 866 Yuhangtang Road, Hangzhou 310058, China
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: yhe@ 123456zju.edu.cn ; Tel./Fax: +86-571-8898-2143.
                Article
                sensors-12-17234
                10.3390/s121217234
                3571835
                23235456
                6d967d58-ab7f-44f6-9778-26c5c6b8df87
                © 2012 by the authors; licensee MDPI, Basel, Switzerland

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 12 October 2012
                : 27 November 2012
                : 10 December 2012
                Categories
                Article

                Biomedical engineering
                maize seed,variety identification,hyperspectral imaging,principal component analysis,kernel principal component analysis,gray-level co-occurrence,least squares-support vector machine,back propagation neural network

                Comments

                Comment on this article