2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis: a review

      review-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The complicated connections and cross talk between the skeletal system and the immune system are attracting more attention, which is developing into the field of Osteoimmunology. In this field, cytokines that are among osteoblasts and osteoclasts play a critical role in bone remodeling, which is a pathological process in the pathogenesis and development of osteoporosis. Those cytokines include the tumor necrosis factor (TNF) family, the interleukin (IL) family, interferon (IFN), chemokines, and so on, most of which influence the bone microenvironment, osteoblasts, and osteoclasts. This review summarizes the effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis, aiming to providing the latest reference to the role of immunology in osteoporosis.

          Related collections

          Most cited references202

          • Record: found
          • Abstract: found
          • Article: not found

          Interleukin-10 and the interleukin-10 receptor.

          Interleukin-10 (IL-10), first recognized for its ability to inhibit activation and effector function of T cells, monocytes, and macrophages, is a multifunctional cytokine with diverse effects on most hemopoietic cell types. The principal routine function of IL-10 appears to be to limit and ultimately terminate inflammatory responses. In addition to these activities, IL-10 regulates growth and/or differentiation of B cells, NK cells, cytotoxic and helper T cells, mast cells, granulocytes, dendritic cells, keratinocytes, and endothelial cells. IL-10 plays a key role in differentiation and function of a newly appreciated type of T cell, the T regulatory cell, which may figure prominently in control of immune responses and tolerance in vivo. Uniquely among hemopoietic cytokines, IL-10 has closely related homologs in several virus genomes, which testify to its crucial role in regulating immune and inflammatory responses. This review highlights findings that have advanced our understanding of IL-10 and its receptor, as well as its in vivo function in health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interleukin-6 Family Cytokines

            The interleukin (IL)-6 family cytokines is a group of cytokines consisting of IL-6, IL-11, ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), oncostatin M (OSM), cardiotrophin 1 (CT-1), cardiotrophin-like cytokine (CLC), and IL-27. They are grouped into one family because the receptor complex of each cytokine contains two (IL-6 and IL-11) or one molecule (all others cytokines) of the signaling receptor subunit gp130. IL-6 family cytokines have overlapping but also distinct biologic activities and are involved among others in the regulation of the hepatic acute phase reaction, in B-cell stimulation, in the regulation of the balance between regulatory and effector T cells, in metabolic regulation, and in many neural functions. Blockade of IL-6 family cytokines has been shown to be beneficial in autoimmune diseases, but bacterial infections and metabolic side effects have been observed. Recent advances in cytokine blockade might help to minimize such side effects during therapeutic blockade.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo.

              Resident macrophages are an integral component of many tissues and are important in homeostasis and repair. This study examines the contribution of resident tissue macrophages to bone physiology. Using immunohistochemistry, we showed that a discrete population of resident macrophages, OsteoMacs, was intercalated throughout murine and human osteal tissues. OsteoMacs were distributed among other bone lining cells within both endosteum and periosteum. Furthermore, OsteoMacs were coisolated with osteoblasts in murine bone explant and calvarial preparations. OsteoMacs made up 15.9% of calvarial preparations and persisted throughout standard osteoblast differentiation cultures. Contrary to previous studies, we showed that it was OsteoMacs and not osteoblasts within these preparations that responded to pathophysiological concentrations of LPS by secreting TNF. Removal of OsteoMacs from calvarial cultures significantly decreased osteocalcin mRNA induction and osteoblast mineralization in vitro. In a Transwell coculture system of enriched osteoblasts and macrophages, we demonstrated that macrophages were required for efficient osteoblast mineralization in response to the physiological remodeling stimulus, elevated extracellular calcium. Notably, OsteoMacs were closely associated with areas of bone modeling in situ, forming a distinctive canopy structure covering >75% of mature osteoblasts on diaphyseal endosteal surfaces in young growing mice. Depletion of OsteoMacs in vivo using the macrophage-Fas-induced apoptosis (MAFIA) mouse caused complete loss of osteoblast bone-forming surface at this modeling site. Overall, we have demonstrated that OsteoMacs are an integral component of bone tissues and play a novel role in bone homeostasis through regulating osteoblast function. These observations implicate OsteoMacs, in addition to osteoclasts and osteoblasts, as principal participants in bone dynamics.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                05 July 2023
                2023
                : 14
                : 1222129
                Affiliations
                [1] 1 Department of Orthopedics, Renmin Hospital of Wuhan University , Wuhan, China
                [2] 2 Renmin Hospital of Wuhan University , Wuhan, China
                [3] 3 Hubei Provincial Hospital of Traditional Chinese Medicine (TCM) , Wuhan, China
                Author notes

                Edited by: Yufeng Yao, Huazhong University of Science and Technology, China

                Reviewed by: Hongsong Zhang, Nanjing Medical University, China; Zhiwei He, Shenzhen University, China

                *Correspondence: Feng Liu, rm002288@ 123456whu.edu.cn

                †These authors contributed equally to this work and share first authorship

                Article
                10.3389/fimmu.2023.1222129
                10355373
                d720a584-bf51-4101-bf2d-13d2f2e144c3
                Copyright © 2023 Xu, Yu, Liu, Wan and Deng

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 May 2023
                : 12 June 2023
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 202, Pages: 16, Words: 7749
                Categories
                Immunology
                Review
                Custom metadata
                Inflammation

                Immunology
                osteoporosis,cytokine,osteoblasts,osteoclasts,bone remodeling
                Immunology
                osteoporosis, cytokine, osteoblasts, osteoclasts, bone remodeling

                Comments

                Comment on this article