102
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification and Genome-Wide Prediction of DNA Binding Specificities for the ApiAP2 Family of Regulators from the Malaria Parasite

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The molecular mechanisms underlying transcriptional regulation in apicomplexan parasites remain poorly understood. Recently, the Apicomplexan AP2 (ApiAP2) family of DNA binding proteins was identified as a major class of transcriptional regulators that are found across all Apicomplexa. To gain insight into the regulatory role of these proteins in the malaria parasite, we have comprehensively surveyed the DNA-binding specificities of all 27 members of the ApiAP2 protein family from Plasmodium falciparum revealing unique binding preferences for the majority of these DNA binding proteins. In addition to high affinity primary motif interactions, we also observe interactions with secondary motifs. The ability of a number of ApiAP2 proteins to bind multiple, distinct motifs significantly increases the potential complexity of the transcriptional regulatory networks governed by the ApiAP2 family. Using these newly identified sequence motifs, we infer the trans-factors associated with previously reported plasmodial cis-elements and provide evidence that ApiAP2 proteins modulate key regulatory decisions at all stages of parasite development. Our results offer a detailed view of ApiAP2 DNA binding specificity and take the first step toward inferring comprehensive gene regulatory networks for P. falciparum.

          Author Summary

          Plasmodium falciparum is the main cause of the devastating human disease malaria. This parasitic organism has a complex lifecycle spanning a variety of different cell types in the mosquito vector and human host. To adapt and survive in these different environments, the parasite precisely regulates the transcription of genes throughout its lifecycle. However, the mechanisms governing transcriptional regulation in P. falciparum are poorly understood. To date, a single family of specific transcription factors, the Apicomplexan AP2 (ApiAP2) proteins, has been identified. These DNA binding proteins are likely to play a major role in coordinating the development of this parasite and are therefore of major interest. Here, we determine the DNA binding specificities for the entire P. falciparum ApiAP2 family of DNA binding proteins. Our results demonstrate that these proteins bind diverse DNA sequence motifs and co-occur in functionally related sets of genes. By mapping these sequences throughout the parasite genome, we can begin to establish a regulatory network underlying parasite development. This study represents the first characterization of a family of DNA binding proteins in P. falciparum and provides an important step towards understanding gene regulation in this parasite.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Discovery of gene function by expression profiling of the malaria parasite life cycle.

          The completion of the genome sequence for Plasmodium falciparum, the species responsible for most malaria human deaths, has the potential to reveal hundreds of new drug targets and proteins involved in pathogenesis. However, only approximately 35% of the genes code for proteins with an identifiable function. The absence of routine genetic tools for studying Plasmodium parasites suggests that this number is unlikely to change quickly if conventional serial methods are used to characterize encoded proteins. Here, we use a high-density oligonucleotide array to generate expression profiles of human and mosquito stages of the malaria parasite's life cycle. Genes with highly correlated levels and temporal patterns of expression were often involved in similar functions or cellular processes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Comparative genomics of the neglected human malaria parasite Plasmodium vivax.

            The human malaria parasite Plasmodium vivax is responsible for 25-40% of the approximately 515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often causes relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated continuously in the laboratory except in non-human primates. We sequenced the genome of P. vivax to shed light on its distinctive biological features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternative invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance investigation into this neglected species.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A proteomic view of the Plasmodium falciparum life cycle.

              The completion of the Plasmodium falciparum clone 3D7 genome provides a basis on which to conduct comparative proteomics studies of this human pathogen. Here, we applied a high-throughput proteomics approach to identify new potential drug and vaccine targets and to better understand the biology of this complex protozoan parasite. We characterized four stages of the parasite life cycle (sporozoites, merozoites, trophozoites and gametocytes) by multidimensional protein identification technology. Functional profiling of over 2,400 proteins agreed with the physiology of each stage. Unexpectedly, the antigenically variant proteins of var and rif genes, defined as molecules on the surface of infected erythrocytes, were also largely expressed in sporozoites. The detection of chromosomal clusters encoding co-expressed proteins suggested a potential mechanism for controlling gene expression.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                October 2010
                October 2010
                28 October 2010
                : 6
                : 10
                : e1001165
                Affiliations
                [1 ]Department of Molecular Biology & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
                [2 ]Institute for Computational Medicine, Weill Cornell Medical College, New York, New York, United States of America
                Seattle Biomedical Research Institute, United States of America
                Author notes

                Conceived and designed the experiments: TLC EKDS KLO OE ML. Performed the experiments: TLC EKDS. Analyzed the data: TLC EKDS KLO OE ML. Contributed reagents/materials/analysis tools: KLO OE. Wrote the paper: TLC ML.

                Article
                10-PLPA-RA-3272R3
                10.1371/journal.ppat.1001165
                2965767
                21060817
                b4d1cb29-786e-42ab-821f-09ab0682a46f
                Campbell et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 5 May 2010
                : 27 September 2010
                Page count
                Pages: 15
                Categories
                Research Article
                Genetics and Genomics/Gene Expression
                Microbiology/Parasitology
                Molecular Biology/Transcription Initiation and Activation

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article