Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
111
views
0
recommends
+1 Recommend
0 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      In utero and childhood polybrominated diphenyl ether (PBDE) exposures and neurodevelopment in the CHAMACOS study.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          California children's exposures to polybrominated diphenyl ether flame retardants (PBDEs) are among the highest worldwide. PBDEs are known endocrine disruptors and neurotoxicants in animals.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Epidemiologic Evaluation of Measurement Data in the Presence of Detection Limits

          Quantitative measurements of environmental factors greatly improve the quality of epidemiologic studies but can pose challenges because of the presence of upper or lower detection limits or interfering compounds, which do not allow for precise measured values. We consider the regression of an environmental measurement (dependent variable) on several covariates (independent variables). Various strategies are commonly employed to impute values for interval-measured data, including assignment of one-half the detection limit to nondetected values or of “fill-in” values randomly selected from an appropriate distribution. On the basis of a limited simulation study, we found that the former approach can be biased unless the percentage of measurements below detection limits is small (5–10%). The fill-in approach generally produces unbiased parameter estimates but may produce biased variance estimates and thereby distort inference when 30% or more of the data are below detection limits. Truncated data methods (e.g., Tobit regression) and multiple imputation offer two unbiased approaches for analyzing measurement data with detection limits. If interest resides solely on regression parameters, then Tobit regression can be used. If individualized values for measurements below detection limits are needed for additional analysis, such as relative risk regression or graphical display, then multiple imputation produces unbiased estimates and nominal confidence intervals unless the proportion of missing data is extreme. We illustrate various approaches using measurements of pesticide residues in carpet dust in control subjects from a case–control study of non-Hodgkin lymphoma.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Brominated flame retardants: cause for concern?

            Brominated flame retardants (BFRs) have routinely been added to consumer products for several decades in a successful effort to reduce fire-related injury and property damage. Recently, concern for this emerging class of chemicals has risen because of the occurrence of several classes of BFRs in the environment and in human biota. The widespread production and use of BFRs; strong evidence of increasing contamination of the environment, wildlife, and people; and limited knowledge of potential effects heighten the importance of identifying emerging issues associated with the use of BFRs. In this article, we briefly review scientific issues associated with the use of tetrabromobisphenol A, hexabromocyclododecane, and three commercial mixtures of polybrominated diphenyl ethers and discuss data gaps. Overall, the toxicology database is very limited; the current literature is incomplete and often conflicting. Available data, however, raise concern over the use of certain classes of brominated flame retardants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Organophosphate Pesticide Exposure and Neurodevelopment in Young Mexican-American Children

              Background Organophosphate (OP) pesticides are widely used in agriculture and homes. Animal studies suggest that even moderate doses are neurodevelopmental toxicants, but there are few studies in humans. Objectives We investigated the relationship of prenatal and child OP urinary metabolite levels with children’s neurodevelopment. Methods Participating children were from a longitudinal birth cohort of primarily Latino farm-worker families in California. We measured six nonspecific dialkylphosphate (DAP) metabolites in maternal and child urine as well as metabolites specific to malathion (MDA) and chlorpyrifos (TCPy) in maternal urine. We examined their association with children’s performance at 6 (n = 396), 12 (n = 395), and 24 (n = 372) months of age on the Bayley Scales of Infant Development [Mental Development (MDI) and Psychomotor Development (PDI) Indices] and mother’s report on the Child Behavior Checklist (CBCL) (n = 356). Results Generally, pregnancy DAP levels were negatively associated with MDI, but child measures were positively associated. At 24 months of age, these associations reached statistical significance [per 10-fold increase in prenatal DAPs: β = −3.5 points; 95% confidence interval (CI), −6.6 to −0.5; child DAPs: β = 2.4 points; 95% CI, 0.5 to 4.2]. Neither prenatal nor child DAPs were associated with PDI or CBCL attention problems, but both prenatal and postnatal DAPs were associated with risk of pervasive developmental disorder [per 10-fold increase in prenatal DAPs: odds ratio (OR) = 2.3, p = 0.05; child DAPs OR = 1.7, p = 0.04]. MDA and TCPy were not associated with any outcome. Conclusions We report adverse associations of prenatal DAPs with mental development and pervasive developmental problems at 24 months of age. Results should be interpreted with caution given the observed positive relationship with postnatal DAPs.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environmental health perspectives
                Environmental Health Perspectives
                1552-9924
                0091-6765
                Feb 2013
                : 121
                : 2
                Affiliations
                [1 ] Center for Environmental Research and Children's Health, School of Public Health, University of California at Berkeley, Berkeley, California 94720, USA. eskenazi@berkeley.edu
                Article
                10.1289/ehp.1205597
                3569691
                23154064
                20728bd0-2315-4b4e-b685-910271e514ec
                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content530

                Cited by85

                Most referenced authors555