Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
71
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease.

      The Journal of Biological Chemistry
      Acetylmuramyl-Alanyl-Isoglutamine, chemistry, metabolism, Bacillus subtilis, physiology, Carrier Proteins, genetics, Cell Line, Crohn Disease, Escherichia coli, Genetic Predisposition to Disease, Humans, Intracellular Signaling Peptides and Proteins, Lipopolysaccharides, Mutagenesis, Site-Directed, NF-kappa B, Nod2 Signaling Adaptor Protein, Peptidoglycan, Recombinant Proteins, Substrate Specificity, Transfection

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          NOD2, a protein associated with susceptibility to Crohn's disease, confers responsiveness to bacterial preparations of lipopolysaccharide and peptidoglycan, but the precise moiety recognized remains elusive. Biochemical and functional analyses identified muramyl dipeptide (MurNAc-L-Ala-D-isoGln) derived from peptidoglycan as the essential structure in bacteria recognized by NOD2. Replacement of L-Ala for D-Ala or D-isoGln for L-isoGln eliminated the ability of muramyl dipeptide to stimulate NOD2, indicating stereoselective recognition. Muramyl dipeptide was recognized by NOD2 but not by TLR2 or co-expression of TLR2 with TLR1 or TLR6. NOD2 mutants associated with susceptibility to Crohn's disease were deficient in their recognition of muramyl dipeptide. Notably, peripheral blood mononuclear cells from individuals homozygous for the major disease-associated L1007fsinsC NOD2 mutation responded to lipopolysaccharide but not to synthetic muramyl dipeptide. Thus, NOD2 mediates the host response to bacterial muropeptides derived from peptidoglycan, an activity that is important for protection against Crohn's disease. Because muramyl dipeptide is the essential structure of peptidoglycan required for adjuvant activity, these results also have implications for understanding adjuvant function and effective vaccine development.

          Related collections

          Author and article information

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content774

          Cited by265