159
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ago HITS-CLIP Expands Understanding of Kaposi's Sarcoma-associated Herpesvirus miRNA Function in Primary Effusion Lymphomas

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          KSHV is the etiological agent of Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and a subset of multicentricCastleman's disease (MCD). The fact that KSHV-encoded miRNAs are readily detectable in all KSHV-associated tumors suggests a potential role in viral pathogenesis and tumorigenesis. MiRNA-mediated regulation of gene expression is a complex network with each miRNA having many potential targets, and to date only few KSHV miRNA targets have been experimentally determined. A detailed understanding of KSHV miRNA functions requires high-through putribonomics to globally analyze putative miRNA targets in a cell type-specific manner. We performed Ago HITS-CLIP to identify viral and cellular miRNAs and their cognate targets in two latently KSHV-infected PEL cell lines. Ago HITS-CLIP recovered 1170 and 950 cellular KSHVmiRNA targets from BCBL-1 and BC-3, respectively. Importantly, enriched clusters contained KSHV miRNA seed matches in the 3′UTRs of numerous well characterized targets, among them THBS1, BACH1, and C/EBPβ. KSHV miRNA targets were strongly enriched for genes involved in multiple pathways central for KSHV biology, such as apoptosis, cell cycle regulation, lymphocyte proliferation, and immune evasion, thus further supporting a role in KSHV pathogenesis and potentially tumorigenesis. A limited number of viral transcripts were also enriched by HITS-CLIP including vIL-6 expressed only in a subset of PEL cells during latency. Interestingly, Ago HITS-CLIP revealed extremely high levels of Ago-associated KSHV miRNAs especially in BC-3 cells where more than 70% of all miRNAs are of viral origin. This suggests that in addition to seed match-specific targeting of cellular genes, KSHV miRNAs may also function by hijacking RISCs, thereby contributing to a global de-repression of cellular gene expression due to the loss of regulation by human miRNAs. In summary, we provide an extensive list of cellular and viral miRNA targets representing an important resource to decipher KSHV miRNA function.

          Author Summary

          Kaposi's sarcoma-associated herpesvirus is the etiological agent of KS and two lymphoproliferative diseases: multicentricCastleman's disease and primary effusion lymphomas (PEL). KSHV tumors are the most prevalent AIDS malignancies and within Sub-Saharan Africa KS is the most common cancer in males, both in the presence and absence of HIV infection. KSHV encodes 12 miRNA genes whose function is largely unknown. Viral miRNAs are incorporated into RISCs, which regulate gene expression mostly by binding to 3′UTRs of mRNAs to inhibit their translation and/or induce degradation. The small subset of viral miRNA targets identified to date suggests that these small posttranscriptional regulators target important cellular pathways involved in pathogenesis and tumorgenesis. Using Ago HITS-CLIP, a technique which combines UV cross-linking, immunoprecipitation of Ago-miRNA-mRNA complexes, and high throughput sequencing, we performed a detailed analysis of the KSHV miRNA targetome in two commonly studied PEL cell lines, BCBL-1 and BC-3 and identified 1170 and 950 putative miRNA targets, respectively. This data set provides a valuable resource to decipher how KSHV miRNAs contribute to viral biology and pathogenesis.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Statistical methods for assessing agreement between two methods of clinical measurement.

          In clinical measurement comparison of a new measurement technique with an established one is often needed to see whether they agree sufficiently for the new to replace the old. Such investigations are often analysed inappropriately, notably by using correlation coefficients. The use of correlation is misleading. An alternative approach, based on graphical techniques and simple calculations, is described, together with the relation between this analysis and the assessment of repeatability.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            On the origin of cancer cells.

            O WARBURG (1956)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ago HITS-CLIP decodes miRNA-mRNA interaction maps

              Summary MicroRNAs (miRNAs) play critical roles in the regulation of gene expression. However, since miRNA activity requires base pairing with only 6-8 nucleotides of mRNA, predicting target mRNAs is a major challenge. Recently, high-throughput sequencing of RNAs isolated by crosslinking immunoprecipitation (HITS-CLIP) has identified functional protein-RNA interaction sites. Here we use HITS-CLIP to covalently crosslink native Argonaute (Ago) protein-RNA complexes in mouse brain. This produced two simultaneous datasets—Ago-miRNA and Ago-mRNA binding sites—that were combined with bioinformatic analysis to identify miRNA-target mRNA interaction sites. We validated genome-wide interaction maps for miR-124, and generated additional maps for the 20 most abundant miRNAs present in P13 mouse brain. Ago HITS-CLIP provides a general platform for exploring the specificity and range of miRNA action in vivo, and identifies precise sequences for targeting clinically relevant miRNA-mRNA interactions.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                August 2012
                August 2012
                23 August 2012
                : 8
                : 8
                : e1002884
                Affiliations
                [1 ]Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
                [2 ]UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
                [3 ]UF Shands Cancer Center, University of Florida, Gainesville, Florida, United States of America
                University of North Carolina at Chapel Hill, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: IH LAG RR. Performed the experiments: IH LAG JH. Analyzed the data: IH LAG YY AMM LMM RR. Wrote the paper: IH RR.

                Article
                PPATHOGENS-D-12-00522
                10.1371/journal.ppat.1002884
                3426530
                22927820
                4481425e-3223-48c7-8319-6c7980f25213
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 1 March 2012
                : 13 July 2012
                Page count
                Pages: 17
                Funding
                This work was in part supported by NIH/NCI grants R01CA88763, RO1CA119917, and RC2CA148407. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Nucleic Acids
                RNA
                RNA stability
                Microbiology
                Virology
                Viral Immune Evasion
                Viral Persistence and Latency
                Viruses and Cancer

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article