11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found
      Is Open Access

      MKP-1 reduces Aβ generation and alleviates cognitive impairments in Alzheimer’s disease models

      Signal transduction and targeted therapy
      Nature Publishing Group UK
      diseases of the nervous system, molecular neuroscience

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) is an essential negative regulator of MAPKs by dephosphorylating MAPKs at both tyrosine and threonine residues. Dysregulation of the MAPK signaling pathway has been associated with Alzheimer’s disease (AD). However, the role of MKP-1 in AD pathogenesis remains elusive. Here, we report that MKP-1 levels were decreased in the brain tissues of patients with AD and an AD mouse model. The reduction in MKP-1 gene expression appeared to be a result of transcriptional inhibition via transcription factor specificity protein 1 (Sp1) cis-acting binding elements in the MKP-1 gene promoter. Amyloid-β (Aβ)-induced Sp1 activation decreased MKP-1 expression. However, upregulation of MKP-1 inhibited the expression of both Aβ precursor protein (APP) and β-site APP-cleaving enzyme 1 by inactivating the extracellular signal-regulated kinase 1/2 (ERK)/MAPK signaling pathway. Furthermore, upregulation of MKP-1 reduced Aβ production and plaque formation and improved hippocampal long-term potentiation (LTP) and cognitive deficits in APP/PS1 transgenic mice. Our results demonstrate that MKP-1 impairment facilitates the pathogenesis of AD, whereas upregulation of MKP-1 plays a neuroprotective role to reduce Alzheimer-related phenotypes. Thus, this study suggests that MKP-1 is a novel molecule for AD treatment.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          The MAPK signaling cascade.

          The transmission of extracellular signals into their intracellular targets is mediated by a network of interacting proteins that regulate a large number of cellular processes. Cumulative efforts from many laboratories over the past decade have allowed the elucidation of one such signaling mechanism, which involves activations of several membranal signaling molecules followed by a sequential stimulation of several cytoplasmic protein kinases collectively known as mitogen-activated protein kinase (MAPK) signaling cascade. Up to six tiers in this cascade contribute to the amplification and specificity of the transmitted signals that eventually activate several regulatory molecules in the cytoplasm and in the nucleus to initiate cellular processes such as proliferation, differentiation, and development. Moreover, because many oncogenes have been shown to encode proteins that transmit mitogenic signals upstream of this cascade, the MAPK pathway provides a simple unifying explanation for the mechanism of action of most, if not all, nonnuclear oncogenes. The pattern of MAPK cascade is not restricted to growth factor signaling and it is now known that signaling pathways initiated by phorbol esters, ionophors, heat shock, and ligands for seven transmembrane receptors use distinct MAPK cascades with little or no cross-reactivity between them. In this review we emphasize primarily the first MAPK cascade to be discovered that uses the MEK and ERK isoforms and describe their involvement in different cellular processes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo.

            Although extensive data support a central pathogenic role for amyloid beta protein (Abeta) in Alzheimer's disease, the amyloid hypothesis remains controversial, in part because a specific neurotoxic species of Abeta and the nature of its effects on synaptic function have not been defined in vivo. Here we report that natural oligomers of human Abeta are formed soon after generation of the peptide within specific intracellular vesicles and are subsequently secreted from the cell. Cerebral microinjection of cell medium containing these oligomers and abundant Abeta monomers but no amyloid fibrils markedly inhibited hippocampal long-term potentiation (LTP) in rats in vivo. Immunodepletion from the medium of all Abeta species completely abrogated this effect. Pretreatment of the medium with insulin-degrading enzyme, which degrades Abeta monomers but not oligomers, did not prevent the inhibition of LTP. Therefore, Abeta oligomers, in the absence of monomers and amyloid fibrils, disrupted synaptic plasticity in vivo at concentrations found in human brain and cerebrospinal fluid. Finally, treatment of cells with gamma-secretase inhibitors prevented oligomer formation at doses that allowed appreciable monomer production, and such medium no longer disrupted LTP, indicating that synaptotoxic Abeta oligomers can be targeted therapeutically.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alzheimer Amyloid-β Oligomer Bound to Post-Synaptic Prion Protein Activates Fyn to Impair Neurons

              SUMMARY Amyloid-beta (Aβ) oligomers are thought to trigger Alzheimer’s disease (AD) pathophysiology. Cellular Prion Protein (PrPC) selectively binds oligomeric Aβ and can mediate AD-related phenotypes. Here, we examined the specificity, distribution and signaling from Aβ/PrP complexes, seeking to explain how they might alter the function of NMDA receptors in neurons. PrPC is enriched in post-synaptic densities, and Aβ/PrPC interaction leads to Fyn kinase activation. Soluble Aβ assemblies derived from human AD brain interact with PrPC to activate Fyn. Aβ engagement of PrPC/Fyn signaling yields phosphorylation of the NR2B subunit of NMDA-receptors, which is coupled to an initial increase and then loss of surface NMDA-receptors. Aβ-induced LDH release and dendritic spine loss require both PrPC and Fyn, and human familial AD transgene-induced convulsive seizures do not occur in mice lacking PrPC. These results delineate an Aβ oligomer signal transduction pathway requiring PrPC and Fyn to alter synaptic function with relevance to AD.
                Bookmark

                Author and article information

                Journal
                6895219
                10.1038/s41392-019-0091-4
                http://creativecommons.org/licenses/by/4.0/

                diseases of the nervous system,molecular neuroscience

                Comments

                Comment on this article