20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of the osteogenic potential of mesenchymal stem cells from human periodontal ligament based on cell surface markers

      International Journal of Oral Science
      Springer Nature

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment.

          The identity of cells that establish the hematopoietic microenvironment (HME) in human bone marrow (BM), and of clonogenic skeletal progenitors found in BM stroma, has long remained elusive. We show that MCAM/CD146-expressing, subendothelial cells in human BM stroma are capable of transferring, upon transplantation, the HME to heterotopic sites, coincident with the establishment of identical subendothelial cells within a miniature bone organ. Establishment of subendothelial stromal cells in developing heterotopic BM in vivo occurs via specific, dynamic interactions with developing sinusoids. Subendothelial stromal cells residing on the sinusoidal wall are major producers of Angiopoietin-1 (a pivotal molecule of the HSC "niche" involved in vascular remodeling). Our data reveal the functional relationships between establishment of the HME in vivo, establishment of skeletal progenitors in BM sinusoids, and angiogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine.

            To date, 5 different human dental stem/progenitor cells have been isolated and characterized: dental pulp stem cells (DPSCs), stem cells from exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSCs), stem cells from apical papilla (SCAP), and dental follicle progenitor cells (DFPCs). These postnatal populations have mesenchymal-stem-cell-like (MSC) qualities, including the capacity for self-renewal and multilineage differentiation potential. MSCs derived from bone marrow (BMMSCs) are capable of giving rise to various lineages of cells, such as osteogenic, chondrogenic, adipogenic, myogenic, and neurogenic cells. The dental-tissue-derived stem cells are isolated from specialized tissue with potent capacities to differentiate into odontogenic cells. However, they also have the ability to give rise to other cell lineages similar to, but different in potency from, that of BMMSCs. This article will review the isolation and characterization of the properties of different dental MSC-like populations in comparison with those of other MSCs, such as BMMSCs. Important issues in stem cell biology, such as stem cell niche, homing, and immunoregulation, will also be discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Concise review: the surface markers and identity of human mesenchymal stem cells.

              The concept of mesenchymal stem cells (MSCs) is becoming increasingly obscure due to the recent findings of heterogeneous populations with different levels of stemness within MSCs isolated by traditional plastic adherence. MSCs were originally identified in bone marrow and later detected in many other tissues. Currently, no cloning based on single surface marker is capable of isolating cells that satisfy the minimal criteria of MSCs from various tissue environments. Markers that associate with the stemness of MSCs await to be elucidated. A number of candidate MSC surface markers or markers possibly related to their stemness have been brought forward so far, including Stro-1, SSEA-4, CD271, and CD146, yet there is a large difference in their expression in various sources of MSCs. The exact identity of MSCs in vivo is not yet clear, although reports have suggested they may have a fibroblastic or pericytic origin. In this review, we revisit the reported expression of surface molecules in MSCs from various sources, aiming to assess their potential as MSC markers and define the critical panel for future investigation. We also discuss the relationship of MSCs to fibroblasts and pericytes in an attempt to shed light on their identity in vivo. © 2014 AlphaMed Press.
                Bookmark

                Author and article information

                Journal
                10.1038/ijos.2015.42

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content1,739

                Cited by34

                Most referenced authors860